期刊文献+

多分量退化的CH型方程的可积性及其解(英文) 被引量:1

Integrability and solutions to multi-component degenerate CH-type equations
下载PDF
导出
摘要 主要研究多分量退化的含有立方项的CH型方程,并证明了其可积性:Lax表示,双哈密顿结构,以及递推算子.特别地,得到了一个退化的两分量的Novikov方程,并给出了其有限个拐点的奇性解. In this paper, we propose a multi-component degenerate CH-type system with cubic nonlinearity. This system is shown to be integrable with admitting Lax pair, bi-Hamiltonian structure and recursion operator. In particular, the two-component degenerate Novikov equation is mainly concerned and its exact singular solutions with a finite number of corners are obtained.
作者 甄肖燕
机构地区 宁波大学数学系
出处 《纯粹数学与应用数学》 2016年第2期169-181,共13页 Pure and Applied Mathematics
基金 国家自然科学基金(11471174)
关键词 双哈密顿结构 多分量CH型方程 极限约束 奇性解 bi-Hamiltonian structure short-wave limit exact singular solution multi-component Camassa-Holm type equation
  • 相关文献

参考文献25

  • 1Hunter J K, Saxton R. Dynamics of director fields [J]. SIAM J. Appl. Math., 1991, 51: 1498-1521.
  • 2Camassa R, Holm D D. A completely integrable dispersive shallow water equation with peaked solitons [J]. Phys. Rev. Lett., 1993, 71: 1661-1664.
  • 3Fuchssteiner B, Fokas A S. Symplectic structures, their B/icklund transformations and hereditary symrne- tries [J]. Phys. D, 1981/1982, 4: 47-66.
  • 4Hunter J K, Zheng Y. On a completely integrable nonlinear hyperbolic variational equation [J]. Phys. D, 1994, 79: 361-386.
  • 5Wang J P. Symmetries of the Hunter-Saxton equation [J]. Nonlinearity, 2010, 23: 2009-2028.
  • 6Tian K, Liu Q P. Conservation laws and Symmetries of Hunter-Saxton equation [J]: revisited, arXiv: 1501.03666vl [nlin.Si], 2015.
  • 7Sch~ifer T, Wayne C E. Propagation of ultra-short optical pulses in cubic nonlinear media [J]. Phys. D, 2004, 196: 90-105.
  • 8Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support [J]. Phys. Rev. E, 1996, 53: 1900-1906.
  • 9Gui G L, Liu Y, Olver P J et al. Wave-breaking and peakons for a modified Camassa-Holm equation [J]. Comm. Math. Phys., 2013, 319: 731-759.
  • 10Beals R, Sattinger D H, Szmigielski J. Inverse scattering solutions of the Hunter-Saxton equation [J]. Applicable Analysis, 2001, 78: 255-269.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部