Improved hearing in noise using new signal processing algorithms with the Cochlear^(TM) Nucleus~ 6 sound processor
Improved hearing in noise using new signal processing algorithms with the Cochlear^(TM) Nucleus~ 6 sound processor
摘要
Objective: To demonstrate the performance benefit of the Automatic Scene Classifier (SCAN) algorithm available in the Nucleus 6 (CP900 series) sound processor over the default processing algorithms of the previous generation Nucleus 5 (CP810) and Freedom HybridTM sound processors. Methods: Eighty-two cochlear implant recipients (40 Nucleus 5 processor users and 42 Freedom Hybrid processor users) listened to and repeated AzBio sentences in noise with their current processor and with the Nucleus 6 processor. Results: The SCAN algorithm when enabled yielded statistically significant non-inferior and superior performance when compared to the Nucleus 5 and Freedom Hybrid sound processors programmed with ASC + ADRO. Conclusion: The results of these studies demonstrate the superior performance and clinical utility of the SCAN algorithm in the Nucleus 6 processor over the Nucleus 5 and Freedom Hybrid processors.
Objective: To demonstrate the performance benefit of the Automatic Scene Classifier (SCAN) algorithm available in the Nucleus 6 (CP900 series) sound processor over the default processing algorithms of the previous generation Nucleus 5 (CP810) and Freedom HybridTM sound processors. Methods: Eighty-two cochlear implant recipients (40 Nucleus 5 processor users and 42 Freedom Hybrid processor users) listened to and repeated AzBio sentences in noise with their current processor and with the Nucleus 6 processor. Results: The SCAN algorithm when enabled yielded statistically significant non-inferior and superior performance when compared to the Nucleus 5 and Freedom Hybrid sound processors programmed with ASC + ADRO. Conclusion: The results of these studies demonstrate the superior performance and clinical utility of the SCAN algorithm in the Nucleus 6 processor over the Nucleus 5 and Freedom Hybrid processors.
参考文献13
-
1Amlani, A., 2001. Efficacy of directional microphone hearing aids; a meta- analytic perspective. J. Am. Acad. Audiol. 12, 202-214.
-
2Bentler, R., 2005. Effectiveness of directional microphones and noise reduc- tion schemes in hearing aids; a systematic review of the evidence. J. Am. Acad. Audiol. 16, 473-484.
-
3Dawson, RW., Decker, J.A., Psarros, C.E., 2004. Optimizing dynamic range in children using the Nucleus cochlear implant. Ear Hear. 25, 230-241.
-
4Gatehouse, S., Noble, W., 2004. The speech, spatial and qualities of hearing scale (SSQ). Int. J. Audiol. 43 (2), 85-99.
-
5James, C.J., Blarney, RJ., Martin, L., Swanson, B., Just, Y., 2002. Adaptive dynamic range optimization for cochlear implants: a preliminary study. Ear Hear. 23, 49S-58S.
-
6Mauger, S.J., Warren, C.D., Knight, M.R., Goorevich, M., Nel, E., 2014. Clinical evaluation of the Nucleus~ 6 cochlear implant system: perfor- mance improvements with SmartSound iQ. Int. J. Audiol. 53, 564-576.
-
7Patrick, J.E, Busby, P.A., Gibson, EJ., 2006. The development of the Nucleus Freedom cochlear implant system. Trends Amplif. 10, 175-200.
-
8Seligman, E, Whitford, L., 1995. Adjustment of appropriate signal levels in the Spectra 22 and mini speech processors. Ann. Otol. Rhinol. Laryngol. Suppl. 166, 172--175.
-
9Spahr, A.J., Dorman, M.F., Litvak, L.M., Van Wie, S., Gifford, R.H., Loizou, EC., Loiselle, L.M., Oakes, T., Cook, S., 2012. Development and validation of the AzBio sentence lists. Ear Hear. 33 (1), 112.
-
10Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., van Dijk, B., van Wiefingen, A., Wouters, J., 2007. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nu- cleus Freedom cochlear implant system. Ear Hear. 28 (1), 62-72.
-
1PING Lichuan,YUAN Meng,TANG Guofang,FENG Haihong.Place-pitch perception in electrical hearing with post-lingually deafened cochlear implant users[J].Chinese Journal of Acoustics,2012,31(4):482-488.
-
2沙加.聆听真实的音乐——SPL Phonitore耳机放大器[J].数字家庭,2016,0(12):68-69.
-
3顾正保.澳大利亚—全方位立体声影院声音处理器简介[J].影视播放技术,1997(2):14-16.
-
4YANG Lin,ZHANG Jianping,WANG Di,YAN Yonghong.Cochlear implant signal processing algorithm based on frequency modulation[J].Chinese Journal of Acoustics,2010,29(3):298-307.
-
5引入新音质设计技术的声音处理器[J].今日电子,2017,0(1):94-94.
-
6张宝富,马力宁,戴永柏.FCQA-8631声音处理器的调试与使用[J].现代电影技术,2013(1):44-48.
-
7姚世荣.一种兼容性较广的影院立体声处理器系列[J].影视播放技术,1997(3):3-6.
-
8邱名奇,任训亚,戴永柏.FCQA-6431声音处理器的调试与使用[J].现代电影技术,2012(7):47-52.
-
9张烈.数字式声音处理器的静态噪声[J].无线电与电视,1995(12):28-29.
-
10Rakesh Tamrakar.Research on the Block Repeated-OFDMA[J].China Communications,2008,5(3):95-98.