期刊文献+

基于混合Markov链的用户浏览预测模型

User Navigation Prediction Model Based on Mixture Markov Chains
下载PDF
导出
摘要 根据Web用户的浏览历史建立用户浏览预测模型是Web环境下实现个性化服务和开发各种浏览导航工具的关键。该文首先利用PLSA模型对Web用户进行用户聚类,然后建立基于用户类别的混合Markov链用户浏览预测模型,该模型更能准确地描述用户浏览特征。实验结果表明了该模型的优越性。 In Web environment, according to Web users' navigation history, building user browsing prediction model are keys to achieve the personalized services and develop all kinds of browsing navigation tools. In the paper, at first we produce similar user groups based on PLSA model, then according to different user category, user browsing prediction model based on mixture Markov chains is built, this model can more accurately describe user browsing characteristics. Experimental result shows the superiority of the model.
出处 《数字技术与应用》 2016年第4期54-56,共3页 Digital Technology & Application
关键词 MARKOV链 用户聚类 用户浏览预测模型 Markov chain user clustering user navigation prediction model
  • 相关文献

参考文献9

  • 1Bestavros A.Using Speculation to Reduce Server Load and service Time on the WWW[C].In Proceedings of the 4th ACM International Conference on Information and Knowledge management,Balti more.M D. 1995:403-410.
  • 2Sarukkai R.Link prediction and path Analysis using Markov chains.ln:Proceedings of the 9th world wide web conference, Amsterdam,Netherlands,2000.http://www9.org/w9cdrom/68/68.Html.
  • 3Jin X, Zhou Y, Mobasher B.Web usage mining based on probabi- listic latent semantic analysis[C].Proc of the 10 the ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. New York:ACM Press,2004:197-205.
  • 4邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. 被引量:45
  • 5Sen R, Hansen M H.Predicting A Web user" s next request based on log data[J]. Journal of Computational Graphics and statistics,2003,12(I ):I 43-i 55.
  • 6Hofmann T.Unsupervised Learning by Probabilistic Latent Semantic Analysis[J].Machine Learning,2001,42(1):1 77-196.
  • 7Marques JP.Pattern Recognition Concepts, Methods and Applications[C].2nd ed.,Beijing:Tsinghua University Press, 2002: 51-74.
  • 8Mobasher, B. Web Usage Mining and Personalization, in Practical Handbook of Internet Computing, M.P. Singh, Editor. 2004,CRC Press.
  • 9Borges J, Levene M.Data mining of user navigation patterns [C].In Proceedings of the 1999 KDD Workshop on Web Mining,CA: Springer-Verlag Press,1 999.92-i i 1.

二级参考文献9

  • 1史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 2Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109
  • 3Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284
  • 4Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111
  • 5Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html
  • 6Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999
  • 7Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996
  • 8Cooper G F, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9: 309~347
  • 9Heckerman D,Geiger D,Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20: 197~243

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部