期刊文献+

面向智能电网能量调控应用的超导磁储能技术:理论模型、装置特性、研究现状和应用展望 被引量:5

Theoretical Modeling,Device Characteristic,Research Status and Application Prospect of SMES Technology for Smart Grid Energy Management
下载PDF
导出
摘要 超导磁储能技术在未来智能电网的快速、高效、智能化能量调控中具有重要的应用前景。为推进此技术的实用化研究,构建了基于电路-磁场-超导体耦合分析原理的能量交互仿真模型,开发了能量交互实验测试平台,在超导磁储能系统中友好地桥接了应用超导领域和电气工程领域。在总结超导磁储能技术研究现状的基础上,提出了面向低温液氢燃料电池汽车应用、低压直流微型电网应用及未来智能电网应用的新的实用系统方案设计及可行性分析,展望了超导磁储能系统在未来智能电网的发、输、配、用电环节中的核心应用模式和重要应用前景。 Superconducting magnetic energy storage (SMES) technologies have significant application prospects in fast, efficient and intelligent energy management of future smart grids. A novel SMES energy interaction model and its mutual experimental device are presented by using the circuit-field-superconductor coupled analysis principle, which friendly links the applied superconductivity field and the electrical engineering field by one SMES device. For the feasibility studies of SMES frontier applications based on the ad- vanced SMES development and application status, SMES - based liquid hydrogen powered fuel cell electric vehicle and SMES - based low - voltage direct-current micro grid are fulfilled, practical system scheme design and feasibility analysis of smart grid application are presented, and integrated application prospects in the power generation, transmission, distribution and utilization subsystems of future smart grids are forecasted.
出处 《南方电网技术》 北大核心 2015年第12期44-57,共14页 Southern Power System Technology
关键词 超导磁储能 电路-磁场-超导体耦合分析 液氢燃料电池汽车 低压直流微型电网 电网能量调控 智能电网 超导智能电网 superconducting magnetic energy storage circuit-field-superconductor coupled analysis liquid hydrogen powered fuel cell electric vehicle low-voltage direct-current micro grid energy management of power grid smart grid superconducting smart grid
  • 相关文献

参考文献54

  • 1陈建斌,胡玉峰,吴小辰.储能技术在南方电网的应用前景分析[J].南方电网技术,2010,4(6):32-36. 被引量:43
  • 2贾旭东,韩伟强,李战鹰,陆志刚,刘怡,陈满,董征,赵贵文.深圳宝清站电池储能系统实时数字仿真研究[J].南方电网技术,2011,5(6):69-72. 被引量:4
  • 3李战鹰,贾旭东,陆志刚.大容量电池储能系统实时数字仿真测试技术研究[J].南方电网技术,2011,5(2):7-11. 被引量:11
  • 4JIN Jianxun. Emerging SMES technology into energy storage systems and smart grid applications, Large Scale Renewable Power Generation, Green Energy and Technology [ M ]. Singa- pore: Springer, 2014.
  • 5JIN J X. , XI Y N, WANG Q L, et al. Enabling high-tempera- ture superconducting technologies toward practical applications [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5) : 5400712.
  • 6CHEN X Y, JIN J X, XIN Y, et al. Integrated SMES technolo- gy for modem power system and future smart grid [ J ]. IEEE Transactions on Applied Superconductivity, 2014, 24 (5) : 3801605.
  • 7JIN J X, CHEN X Y, QU R, et al. A superconducting magnetic energy exchange model based on circuit-field-superconductor coupled method [ J ], IEEE Transactions on Applied Supercon- ductivity, 2015, 25 (3): 5700906.
  • 8CHEN X Y, JIN J X, XIN Y, et al. Energy exchange experi- ments and performance evaluations using an equivalent method for a SMES prototype [ J]. IEEE Transactions on Applied Su- perconductivity, 2014, 24(5): 5701005.
  • 9ZHANG J Y, JIN J X, CHEN X Y, et al. Electric energy ex- change and applications of superconducting magnet in an SMES device [ J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 5700704.
  • 10JIN J X, XU W, CHEN X Y, et al. Flux flow loss of HT- SMES coil during energy exchange [ J]. IEEE Transactions on Magnetics, 2014, 50( 11): 90006044.

二级参考文献33

共引文献55

同被引文献39

  • 1Liangzhong YAO,Bo YANG,Hongfen CUI,Jun ZHUANG,Jilei YE,Jinhua XUE.Challenges and progresses of energy storage technology and its application in power systems[J].Journal of Modern Power Systems and Clean Energy,2016,4(4):519-528. 被引量:24
  • 2HIDALGO R, ABBEY C, JOOS G. A review of activedistribution networks enabling technologies[C]. Proceedingsof the 2010 IEEE Power and Energy Society GeneralMeeting, Minnesota, USA, 2010.
  • 3GAYME D,TOPCU U. Optimal power flow with large-scale storage integration[J]. IEEE Transactions on PowerSystems, 2013,28(2): 709-717.
  • 4GAB ASH A, PU LI. Active-reactive optimal power flow indistribution networks with embedded generation and bat-tery storage[J]. IEEE Transactions on Power Systems,2012, 27(4): 2026-2035.
  • 5GILL S,KOCKAR I,AULT G W. Dynamic optimal powerflow for active distribution networksfj]. IEEE Transactionson Power Systems, 2014,29(1): 121-131.
  • 6GABASH A, PU LI. Flexible optimal operation of batterystorage systems for energy eupply networksfj]. IEEE Tran-sactions on Power Systems, 2013, 28(3): 2788-2797.
  • 7CHEN C,DU AN S, CAI T,et al. Optimal allocation andeconomic analysis of energy storage system in microgrids[J].Power Electronics IEEE Transactions on, 2011,26(10):2762-2773.
  • 8GRANVILLE S. Optimal reactive dispatch through interiorpoint methods[J]. IEEE Transactions on Power Systems,1994’ 9(1): 136-146.
  • 9GABASH A,PU LI. Flexible optimal operation of batterystorage systems for energy supply networks[J]. IEEE Tran-sactions on Power Systems, 2013, 28(3): 2788-2797.
  • 10XIE K, SONG Y H. Dynamic optimal power flow byinterior point methods[J]. IEE Proceedings GenerationTransmission and Distribution, 2001,148(1): 76—84.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部