摘要
目的研究基于峭度和负熵的Fast ICA的模型特点,分析两种算法在心电信号去噪中的应用,对ICA在信噪分离中的特点加以分析研究。方法首先利用心电数据库MIH-BIT中单独的心电信号和噪声混合对Fast ICA进行降噪测试,通过降噪后心电信号和原信号对比测试基于峭度和负熵的Fast ICA的降噪效果,然后对Da ISy数据库中的真实含噪心电信号进行降噪,分析其在真实环境中的降噪效果。结果通过多组合成混合含噪心电信号和真实含噪心电信号对两种Fast ICA进行分离测试,发现两种Fast ICA都可成功地分离心电信号和噪声,其中基于峭度的Fast ICA的降噪速度较快,而基于负熵的Fast ICA的精确度较高。结论基于峭度和负熵的Fast ICA可以应用于心电信号的降噪中,并且能够有效降低信号噪声。
Objective To analyze the characteristics of FastICA based on negentropy and kurtosis,and the application of ECG denoising based on the two kinds of FastICA in order to study the characteristics of ICA in separation of ECG and noise. Methods Synthetic and real ECG contaminated by noise are applied to test the two FastICA. Synthetic ECG consists of random noise and single ECG from MIH-BIT to test algorithms’ speed and accuracy. Real ECG is from Da ISy database to analyze the two ICA methods ’effects in the real environment. Results Through synthetic and real ECG tests,the two kinds of FastICA are proved to be effective in ECG denoising. And results show that FastICA based on kurtosis has higher speed and FastICA based on negentropy has higher accuracy. Conclusions The two kinds of FastICA can be effectively applied in ECG denoising with good characteristics.
出处
《北京生物医学工程》
2016年第2期151-155,共5页
Beijing Biomedical Engineering
基金
国家自然科学基金(61271082
61201029
61102094)
江苏省自然科学基金(BK2011759
BK2011565)资助