期刊文献+

FastICA在心电信号降噪中的应用 被引量:1

Application of ECG denoising based on FastICA
下载PDF
导出
摘要 目的研究基于峭度和负熵的Fast ICA的模型特点,分析两种算法在心电信号去噪中的应用,对ICA在信噪分离中的特点加以分析研究。方法首先利用心电数据库MIH-BIT中单独的心电信号和噪声混合对Fast ICA进行降噪测试,通过降噪后心电信号和原信号对比测试基于峭度和负熵的Fast ICA的降噪效果,然后对Da ISy数据库中的真实含噪心电信号进行降噪,分析其在真实环境中的降噪效果。结果通过多组合成混合含噪心电信号和真实含噪心电信号对两种Fast ICA进行分离测试,发现两种Fast ICA都可成功地分离心电信号和噪声,其中基于峭度的Fast ICA的降噪速度较快,而基于负熵的Fast ICA的精确度较高。结论基于峭度和负熵的Fast ICA可以应用于心电信号的降噪中,并且能够有效降低信号噪声。 Objective To analyze the characteristics of FastICA based on negentropy and kurtosis,and the application of ECG denoising based on the two kinds of FastICA in order to study the characteristics of ICA in separation of ECG and noise. Methods Synthetic and real ECG contaminated by noise are applied to test the two FastICA. Synthetic ECG consists of random noise and single ECG from MIH-BIT to test algorithms’ speed and accuracy. Real ECG is from Da ISy database to analyze the two ICA methods ’effects in the real environment. Results Through synthetic and real ECG tests,the two kinds of FastICA are proved to be effective in ECG denoising. And results show that FastICA based on kurtosis has higher speed and FastICA based on negentropy has higher accuracy. Conclusions The two kinds of FastICA can be effectively applied in ECG denoising with good characteristics.
出处 《北京生物医学工程》 2016年第2期151-155,共5页 Beijing Biomedical Engineering
基金 国家自然科学基金(61271082 61201029 61102094) 江苏省自然科学基金(BK2011759 BK2011565)资助
关键词 快速独立分量分析 峭度 负熵 心电信号 消噪 Fast ICA kurtosis negentropy ECG denoising
  • 相关文献

参考文献4

二级参考文献72

  • 1周永军,卢智远,牛中奇,孔令锋.自适应滤波器在心电信号检测中的应用[J].电子质量,2004(12):23-24. 被引量:6
  • 2张艳丽,杨仁弟.基于小波变换自适应滤波方法的ECG信号消噪[J].安徽大学学报(自然科学版),2006,30(6):36-40. 被引量:3
  • 3孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 4焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 5[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 6[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 7[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 8[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 9[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 10[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.

共引文献417

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部