期刊文献+

双线性Fourier乘子交换子的有界性与紧性

Boundedness and Compactness for Commutators of Bilinear Fourier Multipliers
原文传递
导出
摘要 假定T_σ是关于乘子σ的双线性Fourier乘子算子,其中σ满足如下Sobolev正则条件:对某个s∈(n,2n],有sup_(κ∈Z)‖σ_k‖W^s(R^(2m))<∞.对于p_1,p_2,p∈(1,∞)且满足1/p=1/p_1+1/p_2和ω=(ω_1,ω_2)∈A_(p/t)(R^(2n)),建立了T_σ及其与函数b=(b_1,b_2)∈(BMO(R^n))~2生成的交换子T_(σ,b)由L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的有界性;同时,在b_1,b_2∈CMO(R^n)(C_c~∞(R^n)在BMO拓扑下的闭包)的条件下,证明交换子T_(σ,b)是L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的紧算子.为了得到主要结果,我们先后建立了几个双(次)线性极大函数在加多权Morrey空间上的有界性以及该空间中准紧集的判定. Let Ta be the bilinear Fourier multiplier operator associated with multiplier a satisfying the Sobolev regularity that supk∈z||σk||wa(R2n)〈∞ for some s∈(n,2n]. We give the boundedness of Tσ and the commutators Tσ,b generated by Tσ and b = (bl, b2)∈ (BMO(Rn)}2, as well as the compactness of, the BMO-closure of Cc (Rn)) from to Lp for appropriate indices Pl, P2, P c (1,0e) (1/p = 1/pl + l/p2) and multiple weights ω = (ω1,ω2) ∈ Ap/t(R2n). The main ingredient is to establish the multiple weighted estimates for the variants of certain multi(sub)linear maximal operators on the weighted Morrey spaces, and a sufficient condition for a subset in the weighted Morrey spaces to be a strongly pre- compact set, which are in themselves interesting.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第3期317-334,共18页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11371295 11471041) 福建省自然科学基金项目(2015J01025)
关键词 双线性Fourier乘子 交换子 双(次)线性极大算子 紧性 加权Morrey空间 bilinear Fourier multipliers commutators bi(sub)linear maximal opera-tors compactness weighted Morrey spaces
  • 相关文献

参考文献36

  • 1Benyi A., Damian W., Moen K., et al., Compact bilinear commutators: the weighted case, Michigan Math. J.,2015, 64(1): 39-51.
  • 2Benyi A., Torres R., Compact bilinear operators and commutators, Proc. Amer. Math. Soc., 2013, 141: 3609-3621.
  • 3Bourdaud G., Lanze de Cristoforis M., Sickel W., Functional calculus on BMO and relates spaces, J. Funct. Anal., 2002, 189: 515-538.
  • 4Bui A., Duong X., Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math., 2013, 137: 63-75.
  • 5Clop A., Cruz V., Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math., 2013, 38: 91-113.
  • 6Chlazenza F., Frasca M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 1987, 7: 273-279.
  • 7Chen Y., Ding Y., Wang X., Compactness of commutators of Riesz potential on Morrey spaces, Potential Anal., 2009, 30: 301-313.
  • 8Chen Y., Ding Y., Wang X., Compactness for commutators of Marcinkiewicz integral in Morrey spaces, Taiwan Residents J. Math., 2011, 15: 633-658.
  • 9Chen Y., Ding Y., Wang X., Compactness of commutators for singular integrals on Morrey spaces, Canad. .l. Math., 2012, 64(2): 257-281.
  • 10Coifman R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212: 315-331.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部