摘要
在完备可分的半序度量空间中,引入了随机映射对(F,G)关于g随机半序弱增以及(F,G)随机半序弱增的定义,研究了在满足一定非线性压缩条件下的随机映射列F_k:Ω×X×X→X,k=1,2…,g:Ω×X→X和h:Ω×X→X的公共二元随机重合点与公共二元随机不动点问题,所得结果推广了已有文献中的一些不动点定理.
The definitions of partially weakly increasing property of a pair of random mappings (F, G) with respect to g and partially weakly increasing property of (F, G) are introduced and the existence of common coupled random coincidence points and common coupled random fixed points for a sequence of mappings Fk :Ω× X × X→ X, k -- 1, 2,... and g :Ω×X → X and h :Ω×X →X under various contractive conditions in complete and separable partially ordered metric spaces are studied. Many new results are obtained, which generalize some results in the corresponding literatures.
出处
《数学学报(中文版)》
CSCD
北大核心
2016年第3期343-356,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11361042
11071108)
江西省自然科学基金项目(20132BAB201001
2010GZS0147)
赣鄱英才"555工程"领军人才项目
关键词
公共二元随机重合点
公共二元随机不动点
半序集
随机半序弱增
common coupled random coincidence point
common coupled randomfixed point
partially ordered set
partially weakly increasing property