期刊文献+

两个幂等算子线性组合的Drazin逆

On the Drazin Inverse of Linear Combinations Associated with Two Idempotents
原文传递
导出
摘要 利用空间分解的技巧,在条件PQP=QPQ下,得到两个幂等算子P和Q的多线性组合aP+bQ+cPQ+dQP+ePQP的Drazin逆的表达式. We using the technique of space decompositions, the representation of the Drazin inverse for multiplicative combination aP+bQ+cPQ+dQP+ePQP associated with two idempotents P and Q is obtained under the condition PQP = QPQ.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第3期369-376,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11371185 11362011) 教育部高等院校博士学科点专项基金(20111501110001) 内蒙古自然科学基金(2013ZD01 2015MS0117)
关键词 DRAZIN逆 群逆 幂等算子 线性组合 Drazin inverse group inverse idempotent operator linear combination
  • 相关文献

参考文献12

  • 1Campbell S. L., Meyer C. D., Generalized Inverse of Linear Transformations, Pitman Press, London, 1979.
  • 2Castro-gonzlez N., Koliha J. J., New additive results for the & Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(6): 1085 -1097.
  • 3Deng C., The Drazin inverses of sum and difference of idempotents, Linear Algebra Appl., 2009, 430(4): 1282-1291.
  • 4Douglas R. G., On majorization factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc., 1966, 17: 413-416.
  • 5Drazin M. P., Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly, 1958, 65:506- 514.
  • 6Liu X., Wu L., Yu Y., The group inverse of the combinations of two idempotent matrices, Linear Multilinear Algebra, 2011, 59(1): 101-115.
  • 7Meyer C. D., The condition number of a finite Markov chains and perturbation bounds for the limiting probabilities, SIAM J. Algebraic Discrete Methods, 1980, 1(3): 273-283.
  • 8Simeon B., Fuhrer C., Rentrop P., The Drazin inverse in multibody system dynamics, Numer. Math., 1993, 64(4): 521-536.
  • 9Wang G., Wei Y., Qiao S., Generalized Inverse: Theory and Computations, Science Press, Beijing, 2004.
  • 10Wu Z., Chen J., Zeng Q., The Drazin inverses of the linear combinations of idempotents, J. Fujian Norm. Univ. (Nat. Sci. Ed.), 2011, 27(6): 29- 38.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部