期刊文献+

反对角算子矩阵及其平方的(ω)性质的摄动

The Perturbation of Property (ω) for Anti-Diagonal Operator Matrices and Its Square
原文传递
导出
摘要 设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体.若σ_a(T)\σ_(ea)(T)=π_(00)(T),则称T∈B(H)满足(ω)性质,其中σ_a(T)和σ_(ea)(T)分别表示算子T的逼近点谱和本质逼近点谱,π_(00)(T)={λ∈isoσ(T):0<dimN(T-λI)<∞}.T∈B(H)称为满足(ω)性质的摄动,若对任意的紧算子K,T+K满足(ω)性质.本文证明了反对角算子矩阵及其平方具有(ω)性质的摄动的等价性. Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T E B(H) satisfies Property (w) if σa(T)/σea(T) = π00(T), where σa(T) and σea(T) denote the approximate point spectrum and essential approximate point spectrum of T respectively, π00(T) = {λ∈ isoσ(T) : 0 〈 dimN(T - λI) 〈 ∞}. T ∈ B(H) is said to have the perturbation of Property (ω) if T + K satisfies Property (w) for all compact operator K ∈ B(H). We prove the equivalence of the perturbation of Property (ω) for anti-diagonal operator matrix and its square.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第3期411-420,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11371012 11471200 11571213) 陕西师范大学中央高校基本科研业务费专项资金资助(GK201301007 GK201601004)
关键词 (ω)性质 紧摄动 反对角算子矩阵 Property (w) compact perturbations spectrum anti-diagonal operator matrices
  • 相关文献

参考文献15

  • 1Aiena P., Pefia P., Variation on Weyl's theorem, J. Math. Anal. Appl., 2006, 324(1): 566-579.
  • 2Aiena P., Property (w) and perturbation Ⅱ, J. Math. Anal. Appl., 2008, 342(2): 830-837.
  • 3Aiena P., Biondi M. T., Property (w) and perturbations, Y. Math. Anal. Appl., 2007, 336(1): 683- 692.
  • 4Aiena P., Biondi M. T., Villafafie F., Property (w) and perturbations Ⅲ, J. Math. Anal. Appl., 2009, 353(1): 205-214.
  • 5Harte R., Lee W.Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349(5): 2115-2124.
  • 6Herrero D. A., Approximation of Hilbert Space Operators, vol. 1, 2nd edn, Longman Scientific and Technical, Harlow, 1989.
  • 7Herrero D. A., Economical compact perturbations Ⅱ, Filling in the holes, J. Operator Theory, 1988, 19(1): 25-42.
  • 8Herrero D. A., The diagonal entries in the formula "quasitriangular-compact =triangular" and restrictions of quasitriangularity, Trans. Amer. Math. Soc., 1986, 298(1): 1-42.
  • 9Herrero D. A., Taylor T. J., Wang Z. Y., Variation of the Point Spectrum under Compact Perturbations, in: Topics in Operator Theory Adv. Appl., vol. 32, Birkhauser, Basel, 1988:113- 158.
  • 10Ji Y. Q., Quasitriangular+small compact =strongly irreducible, Trans. Amer. Math. Soc., 1999, 351(11): 4657-4673.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部