摘要
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体.若σ_a(T)\σ_(ea)(T)=π_(00)(T),则称T∈B(H)满足(ω)性质,其中σ_a(T)和σ_(ea)(T)分别表示算子T的逼近点谱和本质逼近点谱,π_(00)(T)={λ∈isoσ(T):0<dimN(T-λI)<∞}.T∈B(H)称为满足(ω)性质的摄动,若对任意的紧算子K,T+K满足(ω)性质.本文证明了反对角算子矩阵及其平方具有(ω)性质的摄动的等价性.
Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T E B(H) satisfies Property (w) if σa(T)/σea(T) = π00(T), where σa(T) and σea(T) denote the approximate point spectrum and essential approximate point spectrum of T respectively, π00(T) = {λ∈ isoσ(T) : 0 〈 dimN(T - λI) 〈 ∞}. T ∈ B(H) is said to have the perturbation of Property (ω) if T + K satisfies Property (w) for all compact operator K ∈ B(H). We prove the equivalence of the perturbation of Property (ω) for anti-diagonal operator matrix and its square.
出处
《数学学报(中文版)》
CSCD
北大核心
2016年第3期411-420,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11371012
11471200
11571213)
陕西师范大学中央高校基本科研业务费专项资金资助(GK201301007
GK201601004)
关键词
(ω)性质
紧摄动
谱
反对角算子矩阵
Property (w)
compact perturbations
spectrum
anti-diagonal operator matrices