期刊文献+

链霉菌隐性次级代谢产物生物合成基因簇的激活 被引量:2

Activation of the cryptic secondary metabolite biosynthetic gene clusters (CSMGs) in Streptomyces
原文传递
导出
摘要 链霉菌基因组中存在许多隐性次级代谢产物生物合成基因簇(cryptic secondary metabolite biosynthetic gene cluster,CSMG),在实验室条件下,它们多数处于沉默状态或者很低的表达水平。但在一定条件下这些CSMG可以被激活合成次级代谢产物,这为寻找新的活性天然产物提供新来源。本文总结了目前激活链霉菌CSMG所使用的方法,包括改变发酵条件、核糖体工程、共培养、异源表达、CSR(cluster-situated regulator)基因的遗传改造等。 Numerous cryptic secondary metabolite biosynthetic gene clusters(CSMGs) hiding in sequenced Streptomyces genomes always remain silent or poor expression level under laboratory conditions. However, the CSMGs can be activated and biosynthesize secondary metabolites under certain conditions, which can provide a new way for finding novel bioactive natural products. This review summarized the methods currently used in the activation of the CSMGs, including changing the conditions of fermentation, ribosome engineering, co-culture, heterologous expression and genetic manipulation of cluster-situated regulators(CSRs) genes.
出处 《生命的化学》 CAS CSCD 2016年第2期231-236,共6页 Chemistry of Life
基金 国家自然科学基金项目(81172972)
关键词 链霉菌 隐性次级代谢产物生物合成基因簇 激活 遗传改造 Streptomyces CSMGs activation genetic manipulation
  • 相关文献

参考文献38

  • 1Ikeda H, Ishikawa J, Hanamoto A,et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol, 2003,21: 526 -531.
  • 2Challis GL. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology, 2008, 154: 1555-1569.
  • 3Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol, 2015,13: 509-523.
  • 4Scherlach K,Hertweck C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem, 2006,4: 3517-3520.
  • 5Craney A, Ozimok C, Pimentel-Elardo SM, et al. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol, 2012, 19: 1020-1027.
  • 6Tanaka Y, Hosaka T, Ochi K. Rare earth elements activate the secondary metabolite biosynthetic gene clusters in Streptomyces coelicolor A3 (2). J Antibiot (Tokyo), 2010, 63:477-481.
  • 7Kawai K, Wang G, Okamoto S, et al. The rare earth, scandium,causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett, 2007, 274: 311-315.
  • 8Qu X,Lei C, Liu W. Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. Angew Chem Int Ed Engl, 2011, 50: 9651-9654.
  • 9Ochi K. From microbial differentiation tp ribosome engineering. Biosci Biotechnol Biochem, 2007, 71: 1373-1386.
  • 10Shima J,Hesketh A, Okamoto S, et al. Introduction of a acinorhodin production by r/wL(encoding ribosomal protein SI2) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol, 1996, 178: 7276 -7284.

二级参考文献40

  • 1Ochi K. Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. Journal of General Microbiology , 1986, 132 (9) :2621 - 2631.
  • 2Chakraburtty R, Bibb M. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3 (2) plays a conditional role in antibiotic production and morphological differentiation. Journal of Bacteriology, 1997, 179 ( 18 ) : 5854 - 5861.
  • 3Gomez-Escribano JP, Martin JF, Hesketh A, et al. Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p) ppGpp. Microbiology, 2008, 154 (Pt 3) :744 - 755.
  • 4Martin JF. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. Journal of Bacteriology, 2004, 186 (16):5197- 5201.
  • 5Sola-Landa A, Moura RS, Martin JF. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (10) :6133 - 6138.
  • 6Flardh K, Buttner MJ. Streptomyces morphogenetics : dissecting differentiation in a filamentous bacterium. Nature reviews. Microbiology, 2009, 7 ( 1 ) : 36 - 49.
  • 7Horinouchi S, Beppu T. Regulation of secondary metabolism and cell differentiation in Streptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene, 1992, 115 (1-2): 167 - 172.
  • 8Kato JY, Funa N, Watanabe H, et al. Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (7) :2378 - 2383.
  • 9Kato JY, Miyahisa I, Mashiko M, et al. A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. Journal of Bacteriology, 2004, 186 (7):2206-2211.
  • 10Folcher M, Gaillard H, Nguyen LT, et al. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. The Journal of Biological Chemistry, 2001, 276 (47) :44297 - 44306.

共引文献5

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部