期刊文献+

基于动态污点分析的DOM XSS漏洞检测算法 被引量:14

Vulnerability detection algorithm of DOM XSS based on dynamic taint analysis
下载PDF
导出
摘要 针对Web客户端中基于文档对象模型的跨站脚本攻击(DOM XSS)漏洞检测问题,提出一种基于动态污点分析的DOM XSS漏洞检测算法。通过构造DOM模型和修改Firefox Spider Monkey脚本引擎,利用动态的、基于bytecode的污点分析方法实现了DOM XSS漏洞的检测。对DOM对象类属性的扩展和Spider Monkey字符串编码格式的修改可以完成污点数据标记;遍历Java Script指令代码bytecode的执行路径,获得污点传播路径,实现污点数据集的生成;监控所有可能会触发DOM XSS攻击的输出点,实现DOM XSS漏洞的判定。在此基础上,利用爬虫程序设计并实现了一个互联网DOM XSS漏洞检测系统。实验结果表明,所提算法能有效检测网页存在的DOM XSS漏洞,其检测率可达92%。 Concerning DOM XSS( Document Object Model( DOM)-based Cross Site Scripting( XSS)) vulnerability detection in Web client,a detection algorithm for DOM XSS vulnerability based on dynamic taint analysis was proposed. By constructing DOM model and modifying Firefox Spider Monkey script engine,a dynamic taint analysis method based on the bytecode was used to detect DOM XSS vulnerabilities. First,taint data was marked by extending the attribute of the DOM object class and modifying the string encoding format of Spider Monkey. Then,the execution route of the bytecode was traversed to generate the tainted data set. After that,all the output points which might trigger DOM XSS attacks were monitored to determine whether the application contained the DOM XSS vulnerabilities. In the experiment,a DOM XSS vulnerability detection system containing a crawler was designed and implemented. The experimental results show that the proposed algorithm can effectively detect the DOM XSS vulnerabilities,and the detection rate is about 92%.
出处 《计算机应用》 CSCD 北大核心 2016年第5期1246-1249,1278,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202352) 江苏省自然科学基金资助项目(BK20140797)~~
关键词 动态污点分析 注入点 输出点 执行路径 dynamic taint analysis source sink execution route
  • 相关文献

参考文献4

二级参考文献38

  • 1吴世忠.信息安全漏洞分析回顾与展望[J].清华大学学报(自然科学版),2009(S2):2065-2072. 被引量:22
  • 2陈石坤,李舟军,黄永刚,邢建英.一种基于SAT的C程序缓冲区溢出漏洞检测技术[J].清华大学学报(自然科学版),2009(S2):2169-2175. 被引量:2
  • 3易锦,郭涛,黄永刚,张普含.基于语言等价关系化简Büchi自动机的算法[J].清华大学学报(自然科学版),2009(S2):2181-2185. 被引量:1
  • 4EMARKETER. Social media [ EB/OL]. [ 2013-01- 24] https:// www. emarketer, com/Coverage/SocialMedia, aspx.
  • 5Symantec.诺顿2012网络安全报告[R/OL].[2013-01-30].http://wenku, it168, com/d_O00529769, shtml.
  • 6HASIB A A. Threats of online soial networks [ J]. IJCSNS Interna- tional Journal of Computer Science and Network Security, 2009, 9 (11): 288-293.
  • 7LIVSHITS V B, CUI W. Spectator: detection and containment of JavaScript worms [ C ]// ATC 2008: Proceedings of the USENIX 2008 Annual Technical Conference on Annual Technical Confer- ence. Berkeley: USENIX Association, 2008:335-348.
  • 8CAO Y, YEGNESWARAN V, POSSAS P, et al. PathCutter: seve- ring the self-propagation path of XSS JavaScript worms in social Web networks[ EB/OL]. [ 2013- 10- 10]. http://www, dnssec-test-dyn. corn/sites/default/files/08_2, pdf.
  • 9TER LOUW M , VENKATAKRISHNAN V N . Blueprint: robust prevention of cross-site scripting attacks for existing browsers[ C]// Proceedings of the 2009 30th IEEE Symposium on Security and Pri- vacy. Piscataway: IEEE Press, 2009:331-346.
  • 10LIKARISH P, JUNG E, JO I. Obfuscated malicious JavaScript de- tection using classification techniques[ C]//Proceedings of the 2009 4th International Conference on Malicious and Unwanted Software. Piscataway: IEEE Press, 2009:47-54.

共引文献38

同被引文献98

引证文献14

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部