期刊文献+

一种结合各类同化算法的一般方法

A generalized framework to blend different data assimilation models in Bayesian filter
下载PDF
导出
摘要 提出了一个将不同滤波方法的估计结果相结合的一般框架,进而得到一个更加稳健的估计结果.首先,将不同方法的预报集合(粒子)结合,并通过相应的统计方法去掉集合中对状态估计贡献非常小的粒子.然后,我们使用处理过的集合样本,利用核密度估计(KDE)得到相应的试验密度(proposal distribution),并从该密度中重新抽样,最后利用贝叶斯滤波方法得到新的估计值.由于不同数据同化方法都有相应的适用范围,新方法的估计结果可以结合各类方法的优点,进而得到一个更加稳健的估计结果。在模拟试验中,我们用集合Kalman滤波(EnKF)与粒子滤波(PF)的集合样本来估计试验分布,从模拟结果可以看出,新方法可以较大的提高原有方法的估计精度,并有效的预防了滤波发散. A generalized framework to blend different data-assimilation models is proposed in the present work,to obtain a robust estimate of the state.First,ensembles or particles of different data-assimilation methods are collected.A refinement procedure is then used to remove sample contributing too little to the estimate of the state.Second,aproposal distribution is estimated for Bayesian filter from the collected samples by kernel density estimation.Since different data-assimilations are suitable for different situations,the combined method with different data-assimilation results proposed here are more robust and can be applied to more complicated state space models.Judging from the simulation results,the new method improves accuracy of the state estimation in some models.
作者 王禄恒 李勇
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期127-133,共7页 Journal of Beijing Normal University(Natural Science)
基金 国家重点基础研究发展计划资助项目(2010CB950703) 中央高校基本科研业务费专项基金资助项目
关键词 状态空间模型 数据同化 集合KALMAN滤波 粒子滤波 state space model data-assimilation ensemble Kalman filter particle filter
  • 相关文献

参考文献30

  • 1Rudolph Emil Kalman. A new approach to linear filtering and prediction problems [ J ]. Journal of Fluids Engineering, 1960, 82(1) ..35.
  • 2Simon S Haykin. Kalman filtering and neural networks [M]. New York:Wiley Online Library, 2001.
  • 3Greg Welch, Gary Bishop. An introduction to the kalman filter[D]. North Cardina: Department of Computer Science, University of North Carolina at Chapel Hill, 1995.
  • 4Neil J Gordon, David J Salmond, Adrian FM Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation[J]. In lEE Proceedings F, 1993, 140:107.
  • 5Geir EvenserL Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics [J]. Journal of Geophysical Research, 1994, 99:10143.
  • 6Gerrit Burgers, Peter Jan van Leeuwen, Geir Evenseru Analysis scheme in the ensemble kalman filter [J]. Monthly Weather Review, 1998, 126(6) ..1719.
  • 7Peter L Houtekamer, Herschel L Mitchell. A sequential ensemble kalman filter for atmospheric data assimilation [J]. Monthly Weather Review, 2001, 129(1):123.
  • 8Andrew C Lorenc. The potential of the ensemble kalman filter for NWP-a comparison with 4D-Var[-J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(595):3183.
  • 9Francois Le Gland, Val4rie Monbet, Vu-Duc Tran, et al. Large sample asymptotics for the ensemble kalman filter [M]. Paris:INRIA, 2009:25.
  • 10Chris Snyder, Thomas Bengtsson, Peter Bickel, et al. Obstacles to high-dimensional particle filtering [J]. Monthly Weather Review, 2008, 136(12) :4629.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部