期刊文献+

抛物量子阱的有效量子限制长度及其极化子特性 被引量:1

Effective length of quantum confinement and polaron effect in parabolic quantum well
下载PDF
导出
摘要 采用新的等效长度方法确定了抛物量子阱的有效量子限制长度,并与其他方法的结果进行了比较分析.在此基础上,采用分数维方法计算了抛物量子阱中的极化子特性. A new method of equivalent length is used to determine the effective length of quantum confinement of parabolic quantum well.The result is compared with two other methods.The polarons confined in parabolic quantum well are investigated in the framework of fractional-dimensional approach.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期148-150,共3页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(105740111 10974017)
关键词 有效量子限制长度 等效长度 抛物量子阱 极化子 effective length of quantum confinement equivalent length parabolic quantum well polaron
  • 相关文献

参考文献3

二级参考文献27

  • 1王志平,梁希侠.Polaron Energy and Effective Mass in Parabolic Quantum Wells[J].Chinese Physics Letters,2005,22(9):2367-2370. 被引量:5
  • 2赵凤岐,周炳卿.外电场作用下纤锌矿氮化物抛物量子阱中极化子能级[J].物理学报,2007,56(8):4856-4863. 被引量:16
  • 3L. Wendler and R. Haupt, Electron-phonon interaction in semiconductor superlattices, Phys. Status Solidi B 143(2), 487 (1987).
  • 4N. Mori and T. Ando, Electron optical-phonon interaction in single and double heterostructures, Phys. Rev. B 40(9), 6175 (1989).
  • 5X. X. Lang, The interaction of interface optical phonons with an electron in an asymmetric quantum well, J. Phys.: Condens. Matter 4(49), 9769 (1992).
  • 6F. H. Stillinger, Axiomatic basis for spaces with non integer dimension, J. Math. Phys. 18(6), 1224 (1977).
  • 7X. F. He, Excitons in anisotropic solids: The model of frac- tional dimensional space, Phys. Rev. B 43(3), 2063 (1991).
  • 8H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semicon- ductor quantum wells, Phys. Rev. B 46(7), 4092 (1992).
  • 9P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semi- conductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992).
  • 10P. Christol, P. Lefebvre, and H. Mathieu, Fractional- dimensional calculation of exciton binding energies in semi- conductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993).

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部