期刊文献+

基于相位梯度超表面的高增益天线设计 被引量:1

Design of High-Gain Antenna Based on Phase Gradient Metasurface
下载PDF
导出
摘要 根据广义Snell反射定律,相位梯度超表面可在其表面形成额外的平行波矢分量,从而对电磁波的反射进行调控。如果构成反射超表面单元的相位差按照抛物面分布,那么就可以实现对垂直入射电磁波的聚焦;相反,在超表面焦点处放置辐射球面波的馈源,球面波经超表面反射可以得到平面波,从而提高馈源增益。本文基于有相位梯度的单元,设计了由13×13个单元构成的二维反射相位梯度超表面,并在其焦点处放置贴片天线,构成反射面天线。仿真和测试结果都表明,贴片天线辐射的球面波经超表面反射后得到了平面波,天线的增益达到20 d B,比贴片天线提高了11.7 d B。 According to the generalized Snell's law for reflection,an extra parallel wave vectors can be formed on phase gradient metasurface and will induce the reflection of microwave. If the unit cell follows the parabolic profile to constitute the metasurface,the focusing of normal incidence can be realized;On the contrary,put a feed source which radiates spherical wave at the focal point,plane wave can be got by the reflection of metasurface,improving the gain of the feed source. Based on the phase gradient unit cell,this paper designs a two dimensional phase gradient metasurface by 13×13 units and put a patch antenna at focal point to constitute the reflector antenna. The results of simulation and testing show that spherical wave turns into plan wave by the reflection of metasurface,the reflector antenna achieves peak gain of 20 d B,in which the gain has been enhanced by 11.7 d B.
出处 《微波学报》 CSCD 北大核心 2016年第2期48-51,58,共5页 Journal of Microwaves
关键词 相位梯度 超表面 反射 聚焦 高增益 phase gradient metasurface reflection focusing high gain
  • 相关文献

参考文献16

  • 1Yu F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J ]. Science, 2011,334:333.
  • 2Aieta F, Genevet P, Kats M A, et al. Aberration-free ultra- thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [ Jl. Nano Letters, 2012, 12 : 4932-4936.
  • 3陈红雅,王甲富,马华,屈绍波,张安学.基于开口谐振环的反射超表面设计及实验研究[J].微波学报,2014,30(3):1-4. 被引量:8
  • 4Li Y F, Zhang J Q, Qu s B, et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaees [J]. Applied Physics Letters, 2014, t04: 221110.
  • 5Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surfa'e waves[J]. Nature Materials, 2012, 11:426-431.
  • 6Luo J, Yu H L, Song M W, et al. Highly efficient wave- front manipulation in terahertz based on plasmonic gradi- ent metasurfaces [ J ]. Optics Letters, 2014, 39 (8) : 2229- 2231.
  • 7Wang J F, Qu S B, Ma H, et. al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasur- faces [ J ]. Applied Physics Letters, 2012, 101,201104.
  • 8Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient recta-surfaces [ J ]. Nano Letters, 2012,12: 6223-6229.
  • 9Li X, Xiao S Y, Cai B G, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry [J]. Optics Letters, 2012,37 : 4940-4942.
  • 10Qu C, Xiao S, Sun S, He Q, Zhou L. A theoretical study on the conversion efficiencies of gradient meta-surfaces [J]. Europbysics Letters, 2013,101,54002.

二级参考文献19

  • 1周济.“超材料(metamaterials)”:超越材料性能的自然极限[J].四川大学学报(自然科学版),2005,42(S1):21-22. 被引量:11
  • 2Schurig D, Mock J J, Justice B J, et al. Metamaterial e- lectromagnetic cloak at microwave frequencies [ J ]. Sci- ence, 2006, 314(5801): 977-980.
  • 3Chen H T, Padilla W J, Zide J M O, et al. Active tera- hertz metamaterial devices [ J ]. Nature, 2006, 444 : 597- 600.
  • 4Lai A, Caloz C, Itoh T. Composite right/left-handed transmission line metamaterials [ J ]. IEEE Microw Mag, 2004, 5(3) : 34-50.
  • 5Wang J F, Qu S B, Xu Z, et al. A controllable magnetic metamaterial: split-ring resonator with rotated inner ring [J]. IEEE Trans on Antenna Propagation, 2008, 56 (7) :2018-2022.
  • 6Wang J F, Qu S B, Yang Y M, et al. Multiband left- handed metamaterials [ J ]. Application Physics Letter, 2009, 95(1) :014105.
  • 7Huang R F, Li Z W, Kong L B, et al. Analysis and de- sign of an ultra-thin metamaterial absorber [ J ]. Prog Electromag Res B, 2009, 14:407-429.
  • 8Bilotti F, Toscano A, Boratay A K, et al. Design of min- iaturized narrowband absorbers based on resonant-magnet- ic inclusions [ J]. IEEE Trans on Electromagn Compati- bility, 2011, 53(1) :63-72.
  • 9Li P C, Zhao Y, Alu A, et al. Experimental realization and modeling of a subwavelength frequency-selective plas- monic metasurface [J]. Appl Phys Lett, 2011,99(22) : 221106.
  • 10Burokur S N, Daniel J P, Ratajczak P, et al. Tunable bi- layered metasurface for frequency reconfigurable directive emissions [J]. Appl Phys Lett, 2010, 97(6) :064101.

共引文献33

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部