期刊文献+

输入特征向量的自适应优化——以遥感图像K-均值聚类为例 被引量:2

Self-adaptive Optimization of Input Feature Vector:A Case Study on K-means Clustering from Remotely Sensed Imagery
下载PDF
导出
摘要 针对在常规聚类应用中一般通过人工试凑调试输入特征分量表达式和权重所带来的参数选择困难的问题,该文以自适应计算替代人工调试为目的,给出了一个称为"输入特征向量自适应优化"(Self-adaptive Optimization of Input Feature Vector,SOIFV)的新方法。SOIFV分为两个部分:1)优化输入向量各分量的权重,它通过评估聚类结果的均质特性和紧密程度,确定权分量的改正方向和改正值,通过迭代逐步逼近最适宜的权向量;2)优化特征向量的描述符组合,这种优化通过使用描述符范例数据库自适应替换不适宜的特征分量实现,替换在当前最适宜权向量的指导下进行。以遥感图像K-均值聚类为例,以MATLAB为模拟平台,对SOIFV进行仿真测试;精度评估的测试样本以图像点采样获取,并与常规聚类方法作了精度比较。实验表明:SOIFV对聚类输入特征向量的自适应优化有效,以优化输入向量聚类的平均全局精度为85.27%,比使用常规方法聚类提高18.82%。 Image clustering is the task of allocating pixels into groups or clusters according to the naturally grouping tendency of all the pixels in the feature space specified by an input feature vector. Some parameters for constructing the input feature vector, such as the expressions of features and the weight set for these features, have crucial influences on the quality of clustering. These parameters are usually decided by repeated tests and careful adiustment by hand because it is too difficult to make a proper decision for them. This paper aims to release the man-made adjustment by a newly explored algorithm named Self adaptive Optimization of Input Feature Vector (SOIFV). There are two sub operations in SOIFV: 1) Deciding the weight set of input feature vector by determining whether to increase or to decrease one of the weights and adjusting its value according to the evaluation of homogeneity and tightness of each cluster during one time iteration. 2) Determine if there is a descriptor needs to be replaced with a new one in the pre-built descriptor library by assessing the currently derived weight set. It is revealed that an optimal input feature vector, after iterative adjustment of weight set and sel^adaptive replacement of descriptor,can be constructed when taking K means clustering from remote sensing imagery as an example. The accuracy assessment indicates that by using SOIFV,the average overall accuracy assessed by the samples from image point sampling is 85.27% which is 18.82% higher than that by using conventional K-means clustering.
出处 《遥感信息》 CSCD 北大核心 2016年第2期6-12,共7页 Remote Sensing Information
基金 国家自然科学基金(J1310028)
关键词 聚类 特征空间 权重向量 自适应 K-MEANS clustering feature space weight set self-adaption K-means
  • 相关文献

参考文献26

  • 1夏梦雨,叶春明,吴勇.利用博弈演化算法求解置换Flow shop调度问题[J].制造业自动化,2007,29(7):93-95. 被引量:5
  • 2赵凤,刘汉强,范九伦,潘晓英.应用于遥感图像分割的原型提取谱聚类集成算法[J].武汉大学学报(信息科学版),2012,37(12):1472-1476. 被引量:2
  • 3HAN J, KAMBER M. Data mining : concepts and techniques, third edition[M]. San Francisco .. Morgan Kaufmann, 2011 .. 443-495.
  • 4ANIL K J. Data clustering : 50 years beyond K-means[J]. Pattern Recognition Letters, 2010,31 (8) : 651-666.
  • 5PARK H,JUN C. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2008,36 (2) :3336-3341.
  • 6ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH.. a new data clustering algorithm and its applications [J]. Data Mining and Knowledge Discovery, 1997,1 (2) .. 141-82.
  • 7GUHAA S,RASTOGIB R,SHIMC K, et al. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001,26(1) :73-84.
  • 8XU X, ESTER M, KRIEGEL H. Clustering and knowledge discovery in spatial databases[J]. Vistas in Astronomy, 1997, 41 (3) : 397-403.
  • 9AGRAWAL R,GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data[J]. Data Mining and Knowledge Discovery, 2005,11 (1) : 5-33.
  • 10DALIRIA M R,TORRE V. Shape and texture clustering: best estimate for the clusters number[J]. Image and Vision Computing, 2009,27 (10) :1603-1614.

二级参考文献69

共引文献397

同被引文献17

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部