期刊文献+

支持向量机在雪地环境中的参数反演 被引量:2

Inversion of Snowfield Parameters Based on SVM
下载PDF
导出
摘要 针对传统雪地环境参数反演方法中模型复杂、未知参量多、网络拓扑结构难确定等问题,提出了一种基于最小二乘支持向量回归技术的雪地环境土壤湿度和雪层厚度的反演方法。首先根据雪地环境建立了分层粗糙介质微波散射模型,利用微扰法得出其后向散射系数;然后进行数据敏感性分析,选取雷达频率为1.27GHz(L波段)、双入射角(42°和53°),设计了两种反演方案,分别为单极化和双极化的方式作为微波信号样本信息,经过适当的训练,利用最小二乘支持向量机反演土壤湿度和雪层厚度。结果表明:用多入射角、双极化时,反演结果具有较高的精度;在加噪的情况下,用多入射角、双极化时,该方法的反演结果保持了较好的抗噪能力,为雪地环境中土壤湿度和雪层厚度的反演研究提供了一种可行的方法。 For inversion methods of traditional snowfield environment with some problems including complicated model, a lot of sealed parameters,and difficultly confirmed network topology, there is an inversive way based on the least squares support vector machine (LS-SVM) technique to retrieve the soil moisture and snow thickness of snowfield environment. Firstly, the layered geometry model of medium is constructed by the environment of snowfield, in order to obtain the back-scattering coefficient with small perturbation method (SPM). After data sensitivity analysis,with the 1.27GHz radar frequency (L-band) and dual angle of incidence (42degree/53degree) selected, two types of inversion scheme are designed, hence the single polarization and the dual polarization are selected as the microwave signal sample information. Via appropriate training, the inversion of soil moisture and snow thickness is researched depending on the least squares support vector machine technique. The research results indicate that the inversion result has high accuracy using the dual polarization and incidence angle. Meanwhile,in the having noise situation, the good anti-noise ability is showed by the inversion result with the way of dual polarization and incidence angle,thus providing a feasible approach for the retrieval of soil moisture and snow thickness in the snowfield environment.
机构地区 三峡大学理学院
出处 《遥感信息》 CSCD 北大核心 2016年第2期97-103,共7页 Remote Sensing Information
基金 国家自然科学基金(61179025)
关键词 微扰法 后向散射系数 土壤湿度 雪层厚度 最小二乘支持向量机 small perturbation method (SPM) backscattering coefficient soil moisture snow thickness least squares support vector machine (LS-SVM)
  • 相关文献

参考文献17

  • 1ULABY F T, MOORE R K, FENG J C. Microwave remote sensing(Volume II ) [M]. Beijing : Science Press, 1987.
  • 2SHI J C,WANG J,HSU A Y,et al. Estimation of bare surface soil moisture and surface roughness parameter using L- band SAR image data[J]. IEEE Trans Geo Sci Remote Sens, 1992,35(5)..1254 -1266.
  • 3DUBOIS P C,ZYL J J,ENGMAN T. Measuring soil moisture with imaging radar[J]. IEEE Trans Geo Sci Remote Sens, 1995,33 (4) : 915-926.
  • 4RAO K S, RAJU S, WANG J R. Estimation of soil moisture and surface roughness parameters from hackseattering coefficients[J]. IEEE Trans Geo Sci Remote Sens, 1993,31 (3) : 1094-1099.
  • 5NJOKU E G,I.I L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Trans Geo Sci Remote Sens,1999,37(1):79-93.
  • 6庞自振,廖静娟.基于遗传算法和雷达后向散射模型的地表参数反演研究[J].遥感技术与应用,2008,23(2):130-141. 被引量:6
  • 7NOTARNICOLAC,ANGIUIAA M,POSA F. Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method[J]. IEEE Trans Geo Sci Remote Sens,2008,46(2) :547-557.
  • 8CRISTIANINI N,TAYLOR S. An Introduction to support vector machine[M]. Cambridge:Cambridge Univ Press,2000.
  • 9DREZET P M L, HARRISON R F. Support vector machines for system identification[C]. UKACC International Conference, 1998,1 .. 688-692.
  • 10张清河,徐飞,邹启源.微扰法结合最小二乘支持向量机反演土壤湿度[J].电波科学学报,2015,30(2):300-306. 被引量:1

二级参考文献47

  • 1张俊荣,王丽巍,张德海.植被和土壤的微波介电常数[J].遥感技术与应用,1995,10(3):40-50. 被引量:24
  • 2黄兴忠,金亚秋.利用主被动遥感数据估算土壤湿度和粗糙度的新方法[J].电波科学学报,1996,11(1):27-32. 被引量:5
  • 3乌拉比FT 穆尔RK 冯健超 黄培康 汪一飞.微波遥感(第二卷)[M].北京:科学出版社,1987..
  • 4Fung A K,Li Z Q,Chen K S. Backscattering from a Randomly Rough Dielectric Surface [J]. IEEE Trans. on Geoscience and Remote Sensing, 1992,30(2) : 356-369.
  • 5Sahebi M R,Bonn F,Gwyn Q H J. Estimation of the Moisture Content of Bare Soil from RADARSAT-1 SAR Using Simple Empirical Models[J]. International Journal of Remote Sensing, 2003,24(12) :2575-2582.
  • 6Oh Y,Sarabandi K, Ulaby F T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surface [J].IEEE Trans. on Geoscience and Remote Sensing, 1992,30(2) :370-382.
  • 7Oh Y. Quantitative Retrieval of Soil Moisture Content and Surface Roughness from Muhipolarized Radar Observations of Bare Soil Snrfaces[J].IEEE Trans. on Geoscience and Remote Sensing,2004,42(3) :596-601.
  • 8Oh Y,Sarabandi K, Ulaby F T. Semi-empirical Model of the Ensemble-averaged Differential Mueller Matrix for Microwave Backscattering from Bare Soil Surfaces[J]. IEEE Trans. on Geoscience and Remote Sensing,2002,40 : 1348-1355.
  • 9Dubois P C, van Zyl J, Engman T. Measuring Soil Moisture with Imaging Radars[J]. IEEE Trans. on Geoscience and Remote Sensing, 1995,33 : 915-926.
  • 10Zribi M, Baghdadi N. Analysis of Surface Roughness Heterogeneity and Scattering Behavior for Radar Measurements[J]. IEEE Trans. on Geoscience and Remote Sensing, 2006, 44 (9) :2438-2444.

共引文献5

同被引文献24

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部