摘要
基于深度自编码网络(DAEN),构建了分类深度自编码网络(CDAEN)模型。结合电力变压器在线监测油中溶解气体分析(DGA)数据,提出了基于CDAEN的变压器故障诊断方法。所提方法利用大量无标签样本进行预训练,优化模型参数,并利用少量有标签样本进行微调。实例分析表明,与基于反向传播神经网络(BPNN)、支持向量机(SVM)的故障诊断方法相比,所提方法的诊断正确率更高。
A CDAEN(Classified Deep Auto-Encoder Network) model is built based on the DAEN(Deep AutoEncoder Network). Combined with the on-line monitored data of DGA(Dissolved Gas-in-oil Analysis) for power transformer,a method of transformer fault diagnosis based on CDEAN is proposed,which optimizes the parameters of CDAEN model by the pre-training with massive unlabeled samples and adjusts them with a few labeled samples. Results of case analysis show that the proposed method has higher diagnosis accuracy than those based on the BPNN(Back Propagation Neural Network) and the SVM(Support Vector Machine).
出处
《电力自动化设备》
EI
CSCD
北大核心
2016年第5期122-126,共5页
Electric Power Automation Equipment
基金
国家电网公司浙北-福州特高压输变电工程专项研究经费资助
关键词
深度自编码网络
电力变压器
故障诊断
油中溶解气体分析
反向传播神经网络
支持向量机
deep auto-encoder network
power transformers
fault diagnosis
dissolved gas-in-oil analysis
back propagation neural network
support vector machines