期刊文献+

BP神经网络子批量学习方法研究 被引量:5

Subbatch learning method for BP neural networks
下载PDF
导出
摘要 针对浅层神经网络全批量学习收敛缓慢和单批量学习易受随机扰动的问题,借鉴深度神经网基于子批量的训练方法,提出了针对浅层神经网络的子批量学习方法和子批量学习参数优化配置方法。数值实验结果表明:浅层神经网络子批量学习方法是一种快速稳定的收敛算法,算法中批量和学习率等参数配置对于网络的收敛性、收敛时间和泛化能力有着重要的影响,学习参数经优化后可大幅缩短网络收敛迭代次数和训练时间,并提高网络分类准确率。 When solving problems in shallow neural networks, the full-batch learning method converges slowly and the single-batch learning method fluctuates easily. By referring to the subbatch training method for deep neural net- works, this paper proposes the subbatch learning method and the subbatch learning parameter optimization and allo- cation method for shallow neural networks. Experimental comparisons indicate that subbatch learning in shallow neural networks converges quickly and stably. The batch size and learning rate have significant impacts on the net convergence, convergence time, and generation ability. Selecting the optimal parameters can dramatically shorten the iteration time for convergence and the training time as well as improve the classification accuracy.
出处 《智能系统学报》 CSCD 北大核心 2016年第2期226-232,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(51304114 71371091)
关键词 子批量学习 神经网络 BP算法 批量尺寸 训练方法评估 分类 subbatch learning neural network backpropagation algorithms batch size training methods and evaluation classification
  • 相关文献

参考文献12

  • 1JACOBS R A. Increased rates of convergence through learning rate adaptation[J]. Neural networks, 1988, 1(4): 295-307.
  • 2刘幺和,陈睿,彭伟,周蕾.一种BP神经网络学习率的优化设计[J].湖北工业大学学报,2007,22(3):1-3. 被引量:15
  • 3贾立山,谈至明,王知.基于随机参数调整的改进反向传播学习算法[J].同济大学学报(自然科学版),2011,39(5):751-757. 被引量:8
  • 4RIEDMILLER M, BRAUN H. RPROP-A fast adaptive learning algorithm[C]//Proceedings of the International Symposium on Computer and Information Sciences (ISCIS VII).Ankara, Turkey, 1992.
  • 5CHARALAMBOUS C. Conjugate gradient algorithm for efficient training of artificial neural networks[J]. Devices and systems, IEE proceedings G-Circuits, 1992, 139(3): 301-310.
  • 6VOGL T P, MANGIS J K, RIGLER A K, et al. Accelerating the convergence of the back-propagation method[J]. Biological cybernetics, 1988, 59(4/5): 257-263.
  • 7DENNIS J E Jr, SCHNABEL R B. Numerical methods for unconstrained optimization and nonlinear equations[M]. Philadelphia, USA: SIAM, 1996.
  • 8MOR J J. The Levenberg-Marquardt algorithm: implementation and theory[M]//WATSON G A. Numerical Analysis. Berlin Heidelberg: Springer, 1978: 105-116.
  • 9侯祥林,陈长征,虞和济,王铁光,纪盛青.神经网络权值和阈值的优化方法[J].东北大学学报(自然科学版),1999,20(4):447-450. 被引量:49
  • 10刘奕君,赵强,郝文利.基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J].矿业安全与环保,2015,42(2):56-60. 被引量:44

二级参考文献27

共引文献111

同被引文献27

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部