期刊文献+

桌面云的智能自适应性调度研究 被引量:1

Research on Intelligent Adaptive Scheduling of Desktop Cloud
下载PDF
导出
摘要 在广东移动现有的桌面云基础上,针对现有云计算平台缺乏针对资源供应量的自动调整机制的问题,研究了云计算平台中基础设施资源供给的自适应性问题。主动监控不同等级用户的性能指标和系统指标,并以此为依据,提出了桌面云的智能自适应性理论,统一调度管理不同资源。根据资源需求量对云服务的资源供给进行调整,选择恰当的虚拟机组合为云服务提供足量且高利用率的资源。 Based on Guangdong Mobile's existing desktop cloud, targeting the lack of automatic adjustment mechanism, the paper studied the adaptation for cloud computing platform's infrastructure resource supply. By monitoring different levels of user performance indicators and system metrics, the paper proposed the desktop cloud of intelligent adaptive theory, managed to control various resources, adjusted cloud service resources supply according to demand, and selected the right combination of virtual machines that provided a sufficient amount of cloud services and high resource utilization.
出处 《移动通信》 2016年第8期47-51,共5页 Mobile Communications
关键词 云计算 桌面云 智能调度 自适应性 cloud computing desktop cloud intelligent scheduling self adaptation
  • 相关文献

参考文献10

  • 1Peter Mell, Tim Grance. The NIST Definition of Cloud Computing[J]. Communications of the Acm, 2011,53(6): 50.
  • 2Salesforce Enterprises. Salesforce[EB/OL]. [2015-12-10]. http://www.salesforce.com/.
  • 3维基百科.GoogleAppEngine[EB/OL].[2015-12-10].http://en.wikipedia.org/wiki/Google_App-Engine.
  • 4Amazon. Introduction of EC2[EB/OL]. [2015-12-10]. http://aws.amazon.com/ec2/.
  • 5VMware. Introduction of vSphere[EB/OL]. [2015-12- 10]. http://communities.vmware.com/community/vmtn/ vsphere.
  • 6赵淦森,虞海,季统凯,宋泓.云计算平台的自适应资源供给[J].电信科学,2012,28(1):31-37. 被引量:7
  • 7二次移动平均法[EB/OL].[2015-12-10].http://course.cug.edu.cn/cugFirst/statistics/neirong/zhang194.htm.
  • 8Nagios Enterprises.Nagios简介[EB/OL].[2015-12.10].https://www.nagios.org/.
  • 9frank2336.VDI虚拟桌面基础架构[EB/OL].[2015-12-10].http://blog.Csdn.net/frank2336/article/details/7659506.
  • 10VMware. Vmware ESXi[EB/OL]. [2015-12-10]. http:// www.vmware.com/products/esxi-and-esx/overview.

二级参考文献13

  • 1Ian Foster, Yong Zhao, loan Raicu, et ol. Cloud computing and grid computing 360-degree compared. Grid Computing Environments Workshop, 2008.
  • 2Carsten Binnig, Donald Kossmann, Tim Kraska, et al. How is the weather tomorrow? towards a benchmark for the cloud. Proceedings of the Second International Workshop on Testing Database Systems, ACM New York, NY, USA, 2009.
  • 3云端运算.维基百科,http://zh.wikipedia.org/w/index.php?title =% E9% 9B% B2% E7% AB% AF% E9% 81% 8B% E7% AE% 97&oldid=18129937, 2011.
  • 4Amazon Elastic Compute Cloud (Amazon EC2). http://aws. amazon.com/ec2/, 2011.
  • 5John Viega. Cloud computing and the common man. Computer, 2009(42).
  • 6Jie Yang, Jie Qiu, Ying Li. A profile-based approach to just-intime scalability for cloud applications, Proceedings of IEEE International Conference on Cloud Computing,Bangalore, India, 2009.
  • 7Gansen Zhao, Jiale Liu, Yong Tang, et ol. Cloud computing: a statistics aspect of users. Proceedings of the First International Conference on Cloud Computing, Beijing, China, 2009.
  • 8Gansen Zhao, Chunming Rong, Jiale Liu, et al. Modeling user growth for cloud scalability and availability. Journal of Intemet Technology, 2010, 11(3).
  • 9Gokul Soundararajan, Cristiana Amza. Reactive provisioning of backend databases in shared dynamic content server clusters. ACM Trans Auton,2006, 1(2).
  • 10Jerry Roliaa, Xiaoyun Zhua, Martin Arlitta, et al, Statisical service assurances for applications in utility grid environments. Performance Evaluation, 2004, 11(58): 319-339.

共引文献6

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部