期刊文献+

锂离子电池硅碳负极用壳聚糖粘结剂的性能研究 被引量:2

Performance of Chitosan as the Binder for Si/C Anode of Li-ion Batteries
下载PDF
导出
摘要 研究了壳聚糖(CS)粘结剂在锂离子电池硅碳负极中的性能。通过XRD、红外光谱和SEM表征粘结剂和电极的结构与形貌,测试了粘结剂的剥离强度,通过电化学性能和电极动力学比较了壳聚糖与聚偏氟乙烯(PVDF)作为粘结剂对硅碳复合材料电化学性能的影响。结果表明:CS粘结剂和PVDF粘结剂极片剥离强度分别为10.5和7.6 N/m,水溶性高分子CS粘结力更强;CS、PVDF作为硅碳负极粘结剂首次可逆比容量分别为572.4和568.3 m Ah/g,首次库伦效率分别为78.4%和79.5%,50次循环后容量保持率分别为72.3%和65.8%。与PVDF相比,CS更适合应用于锂离子电池硅碳负极材料中。 With Chitosan( CS) as the binder for Si / C anode of lithium-ion batteries,X-ray diffractometry( XRD),Fourier transform infrared spectra( FI-IR) and scanning electron microscopy( SEM) were used to characterize the structure and morphology of the binder and electrodes,and peel strength of the binder was measured in the tests. The effect of chitosan as binder on the electrochemical performance of Si / C composite was investigated in comparison with poly( vinylidene fluoride)( PVDF) binder in terms of electrochemical performance and electrode kinetics. Results showed the peel strength of the CS and PVDF were respectively 10. 5 and 7. 6 N / m,composites using CS and PVDF separately as the binder had the initial reversible specific capacity of 572. 4 and 568. 3 m Ah / g,and the initial coulombic efficiency of 78. 4% and 79. 5%,respectively. Moreover,the capacity retention rates after 50 cycles reached 72. 3%and 65. 8%,respectively. Consequently,CS can be regarded as a better binder for Si / C anode than PVDF.
出处 《矿冶工程》 CAS CSCD 北大核心 2016年第2期108-111,115,共5页 Mining and Metallurgical Engineering
基金 湖南省科技重大专项(2009FJ1002)
关键词 锂离子电池 负极材料 硅碳负极 粘结剂 壳聚糖 电化学性能 Li-ion batteries anode material Si / C anode binder chitosan electrochemical performance
  • 相关文献

参考文献23

  • 1J Lal, H Guo, Z Wang, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2012,530:30-35.
  • 2M Su, Z Wang, H Guo, et al. Enhanced cycling performance of Si/ C composite prepared by spray-drying as anode for Li-ion batteries [ J]. Powder Technology, 2013,249:105-109.
  • 3C Erk, T Brezesinski, H Sommer, et al. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders [ J ]. ACS Appl Mater Interfaces, 2013,5 (15) :7299-7307.
  • 4D Shao, H Zhong, L Zhang. Water-Soluble Conductive Composite Binder Containing PEDOT: PSS as Conduction Promoting Agent for Si Anode of Lithium-Ion Batteries[ J ]. (;hem Electro Chem, 2014,1 (10) : 1679-1687.
  • 5J Song, M Zhou, R Yi, et al. Interpenetrated Gel Polymer Binder forHigh-Performance Silicon Anodes in Lithium-ion Batteries [ J ]. Ad- vanced Functional Materials, 2014,24 (37) :5904-5910.
  • 6S Huang, H Guo, X Li, et al. Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries [ J]. Journal of Solid State Electrochemistry, 2013,17 ( 5 ) : 1401 - 1408.
  • 7F Wu, X Li, Z Wang, et al. Petal-like Li4TisOt2-TiO2 nanosheets as high-performance anode materials for Li-ion batteries [ J ]. Nanoscale, 2013,5(15) :6936-6943.
  • 8G Yan, X Li, Z Wang, et al. Compatibility of Graphite with 1,3-(1, 1,2, 2-Tetrafluoroethoxy) propane and Fluoroethylene Carbonate as Cosolvents for Nonaqueous Electrolyte in Lithium-Ion Batteries [ J ]. The Journal of Physical Chemistry C, 2014,118 (13) :6586-6593.
  • 9J Wang, Q Zhang, X Li, et al. Sputtering graphite coating to im- prove the elevated-temperature cycling ability of the LiMn204 elec- trode[J]. Phys Chem Chem Phys, 2014,16(30) :16021-16029.
  • 10N Nitta, F Wu, J T Lee, et al. Li-ion battery materials: present and future [ J ]. Materials Today, 2015,18 (5) : 252-264.

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部