期刊文献+

大功率PEMFC空气系统电流跟随分段PID控制方法研究 被引量:6

Current Following Segmented PID Control of Air Supply System in Heavy-Duty PEMFC System
下载PDF
导出
摘要 为优化大功率燃料电池系统空压机控制效果,基于离心式空压机系统模型,提出了大功率质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)空气供给系统的电流跟随分段PID控制方法.该方法以离心式空压机响应特性为基础,以实际工作电流为跟随目标,在动态响应与稳态控制阶段采用不同的PID参数进行闭环控制,并进行了模拟仿真研究.最后,在实验室已有的150 k W燃料电池系统基础上的实验验证,模拟仿真与实验验证结果表明,仿真模型计算误差控制在5%以内,准确的反映了离心式空压机与空气供给系统的特性,所提出的大功率PEMFC空气供给系统的电流跟随分段PID控制方法不仅能够满足PEMFC电堆稳态控制要求,同时将动态响应时间缩短至3 s以内,控制效果良好. In order to optimize control effect of air compressor in a heavy-duty fuel cell system, a current following segmented PID control method for air supply system in a heavy-duty PEMFC (proton exchange membrane fuel cell) system was proposed based on centrifugal air compressor model. The method selects different PID parameters in dynamic response and steady state for closed loop control, and takes actual current as following goal based on the response characteristics of the centrifugal air compressor. The control effect was simulated and tested on the 150 kW fuel cell engine system developed in our laboratory. Simulation and experimental results indicate that the computation error of simulations is less than 5% , indicating that the model can reflect the character of the centrifugal air compressor and the air supply system; and the proposed current following segmented PID control method can fulfill dynamic control of the air supply system with response time of less than 3 s and good control effect.
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第3期437-445,共9页 Journal of Southwest Jiaotong University
基金 国家科技支撑计划资助项目(2014BAG08B01) 国家自然科学基金资助项目(51177138 61473238 51407146)
关键词 PEMFC 离心式空气压缩机 仿真 电流 分段控制 proton exchange membrane fuel cell (PEMFC) centrifugal air compressor simulation current segmented control
  • 相关文献

参考文献14

  • 1陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势[J].西南交通大学学报,2009,44(1):1-6. 被引量:80
  • 2郭爱,陈维荣,刘志祥,李奇.燃料电池机车热管理系统建模和动态分析[J].西南交通大学学报,2015,50(5):953-960. 被引量:12
  • 3BLUNIER B, PUCCI M, CIRRINCIONE G, et al. A scroll compressor with a high-peffotalance induction motor drive for the air management of a PEMFC system fi)r automotive applications[J]. IEEE Trans. Ind. Appl., 2008, 44(6): 1966-1976.
  • 4张立炎,潘牧,全书海.燃料电池空气供应系统建模与动态仿真的研究[J].系统仿真学报,2008,20(4):850-854. 被引量:9
  • 5PUKRUSHPAN J T, PENG H, STEFANOPOULOU A G. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model[ C ]// ASME 2002 International Mechanical Engineering Congress and Exposition. New Orleans: American Society of Mechanical Engineers, 2002 : 637- 648.
  • 6韩永杰,诸葛伟林,汗茂海,等.基于离心式乐缩机的燃料电池系统仿真[J].汽车工程,2004,30(1):36-39.
  • 7BARCHEWITZ L P, SEUME J R. Dynamic modelling and controls of an air supply system for in-flight proton exchange membrance fuel cells (PEM-FC) [ C ]// ASME Turbo Expo 2007: Power for Land, Sea, and Air. Montreal: [ s. n. ] , 2007 : 363-372.
  • 8ZHAO Dongdong, BLUNIER B, GAO Fei. Control of an ultrahigh-speed centrifugal compressor for the air management of fuel cell systems[J], lnduslry Applications, 2014, 50(3): 2225-2234.
  • 9ZHAO Dongdong, ZHENG Qing, GAO Fei. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. Hydrogen Energy, 2014, 39 (4) : 1788-1798.
  • 10ZHAO Dongdong, GAO Fei, BOUQUAIN D. Sliding- mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications[ J]. Vehicular Technology, 2014, 63(1) : 51-61.

二级参考文献41

  • 1SCOTT D S, ROGNER H H, scoTr M B. Fuel cell locomotives in Canada[J]. Hydrogen Energy, 1993, 18(3) : 253-263.
  • 2MENZER R, HOHLEI B. Analysis of energy and water management in terms of fuel cell electricity generation [ J ]. Power Sources, 1998, 71 ( 1 ) : 294-301.
  • 3OGDEN J M. Developing an infrastructure for hydrogen vehicles : a Southern California case study [ J ]. Hydrogen Energy, 1999, 24(2) : 709-730.
  • 4MILLER A R. Least-cost hybridity analysis of industrial vehicles[ J ]. European Fuel Cell News, 2001, 7 (2) : 15-17.
  • 5MIZSEY P, NEWSON E. Comparison of different vehicle power trains[ J ]. Power Sources, 2001, 102(2) : 205-209.
  • 6MILLER A R, BARNES D L. Fuel cell locomotives[C]//Proceedings of Fuel Cell World, Lucerne: [ s. n, ], 2002: 855- 861.
  • 7MILLER A R, BARNES D L, VELEV O, et al. Fuel cell locomotive for commercial and military railways[ C]//Proceedings of the 2004 Fuel Cell Seminar. San Antonio: [ s. n. ], 2004 : 1-5.
  • 8PEDE G, IACOBAZZI A, PASSERINI S, et al. FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train[J]. Power Sources, 2004, 125(1) : 280-291.
  • 9FUJII T, TERAYA N, OSAWA M. Development of a new energy (NE) train[ J]. Japanese Railway Engineering, 2006, 156(4) : 62-70.
  • 10MILLER A R, HESS K S, BARNES D L, et al. System design of a large fuel cell hybrid locomotive[J]. Power Sources, 2007, 173 ( 1 ) : 935-942.

共引文献96

同被引文献29

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部