期刊文献+

基于手机运动传感器数据的交通流拥挤识别 被引量:4

Recognition of Traffic Congestion Based on Mobile Phone Sensor Data
下载PDF
导出
摘要 准确的交通流状态识别是智能交通管理与控制的基础.通过所开发的手机端软件从手机中提取车辆的加速度与角加速度数据,在研究了其统计特征后,发现该数据可反应周围车辆对目标车辆运行环境的影响,从而与交通流状态的变化有着密切关系.利用支持向量机学习算法,以加速度与角加速度统计参数作为输入变量识别断面交通流状态.实验结果识别精度最高达到92%,表明加速度和角加速度指标可作为交通流状态的表征参数.该研究采用Lasso模型和最小角回归算法对输入参数进行变量选择,在降低计算成本的同时保证了良好的识别效果. Accurate recognition of traffic congestion is the basis of intelligent transportation system. This study develops a new method to evaluate the running environment surround the target vehicle based on two parameters: the real-time acceleration and angular acceleration collected from the smart phone. After analyzing the statistical characteristics of the parameters, the data is found to have a close relationship with the corresponding traffic flow states. Support vector machine and parametric optimization method are utilized to test these data. The experiments show a highest accuracy of 92% , indicating that acceleration and angular acceleration could be considered together as the characterization parameters of traffic flow states. To reduce the computation cost while maintaining the accuracy of the traffic state identification, strong explanatory variables of the support vector machine algorithm are recognized by the relative optimal regression model and the least angle regression method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第3期553-562,共10页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(71201135 71431003) 国家博士点基金资助项目(新教师类 20120184120017)
关键词 手机运动传感器 机器学习 交通流状态识别 Lasso 最小角回归算法 mobile phone motion sensor machine learning traffic state identification Lasso least angle regression
  • 相关文献

参考文献12

  • 1GEROLIMINIS N, DAGANZO C F. Existence of urban- scale macroscopic fundamental diagrams : some experimental findings[ J ]. Institute of Transportation Studies Research Reports Working Papers Proceedings, 2008, 42 (9) : 759 770.
  • 2GEROLIMINIS N. A macroscopic fundamental diagram of urban traffic: recent findings[J]. Transportation Research E-Circular, 2011, E-C149: 84.
  • 3ZHANG Y C, ZUO X Q, ZHANG L T, et al. Traffic congestion detection based on gps floating-car data[ J]. Procedia Engineering, 2011, 15: 5541-5546.
  • 4HERRERA J C, WORK D B, HERRING R, et al. Evaluation of traffic data obtained via gps-enabled mobile phones: the mobile century field experiment [ J ]. Transportation Research Part C Emerging Technologies, 2009, 18(4) : 568-583.
  • 5KO J, GUENSLER R, HUNTER M. Analysis of effects of driver/vehicle characteristics on acceleration noiseusing GPS-equipped vehicles [ J ]. Transportation Research Part F Traffic Psychology and Behaviour, 2010, 13(1) : 21-31.
  • 6CHEN X, XIN L, FENG H, et al. Models on real- time state identification for unban traffic based on fixed detector[J]. Applied Mechanics & Materials, 2014, 641 : 818-823.
  • 7刘祥楼,贾东旭,李辉,姜继玉.说话人识别中支持向量机核函数参数优化研究[J].科学技术与工程,2010,10(7):1669-1673. 被引量:50
  • 8ROBERT T. Regression shrinkage and selection via the Lasso: a retrospective[J]. Journal of the Royal Statistical Society, 2011, 73 (3) : 273-282.
  • 9ZOU H. The adaptive lasso and Its oracle properties[J] Journal of the American Statistical Association, 2006, 101: 1418-1429.
  • 10MEINSHAUSEN N, B HLMANN P. High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics, 2006, 34(3) : 1436-1462.

二级参考文献7

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2Gunn R. Support vector machines for classification and regression. Technical Report of University of Southamption,1998.
  • 3Lin Tienlin, Lin Chihjen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, http ://www. csie. ntu. edu. tw/-cjlin/. 2003.
  • 4Chang Chihchung , Lin Chihjen. LIBSVM: a library for support vector machines. Last updated: February, http://www, csie. ntu. edu. tw/- ejlin/libsvm. 2009.
  • 5Hsu Chihwei, Chang Chihehung, Lin Chihjen. A practical guide to support vector classieation, http://www, esie. ntu. edu. tw/- cjlin/papors/guide/guide, pdf. 2001.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 7朱东来,王仁华,凌震华,李威.基于隐马尔科夫模型的汉语韵律词基频模型[J].声学学报,2002,27(6):523-528. 被引量:7

共引文献49

同被引文献35

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部