期刊文献+

金纳米棒吸收光谱法测定水中微量汞(Ⅱ) 被引量:1

Determination of trace mercury(Ⅱ) in water by the optical absorption spectra of gold nanorods
原文传递
导出
摘要 采用金纳米棒吸收光谱法测定水中Hg(Ⅱ)的浓度。研究表明,金纳米棒比金纳米球具有更高的长波等离激元共振峰(LSPR)位移,不同长径比的金纳米棒对LSPR位移影响不大;当p H<7时,溶液中p H越小LSPR位移越小,当p H>7时,LSPR位移基本不变。LSPR位移在Hg(Ⅱ)浓度为3μmol/L前后表现出两度线性关系,Hg(Ⅱ)浓度大于20μmol/L时金纳米棒与汞完全形成合金,测定Hg(Ⅱ)的检出限为41 nmol/L。 The concentration of mercury( II) in water was determined by the optical absorption spectra of gold nanorods. The results showed that the longitudinal plasmon resonance( LSPR) shifts of the gold nanorods were more clear than that of the gold nanospheres and the LSPR shifts were hardly affected by aspect ratio. At the lower p H,the more the LSPR shifted when the p H 〉7,while the LSPR shifts were almost the same when p H〈 7. When the concentration of mercury( II) was near or lower than 3 μmol / L,the LSPR shift was linear with the concentration of mercury( II). When the concentration of mercury( II) was higher than 20 μmol / L,the gold nanorods completely formed amalgam. Only Pb( II) could result in negative interference at the determination of Mercury( II) and the limit of detection was 41 nmol / L.
出处 《分析试验室》 CAS CSCD 北大核心 2016年第4期414-417,共4页 Chinese Journal of Analysis Laboratory
基金 北京国检局科技计划课题资金资助项目(2015BK012)资助
关键词 金纳米棒 Hg(Ⅱ) 吸收光谱法 长波等离激元共振峰 Gold nanorods Mercury(Ⅱ) Optical absorption sepectra Longitudinal plasmon resonance
  • 相关文献

参考文献12

  • 1刘瑞利,王卓,陈兆鹏.金纳米棒比色法检测铜离子[J].广东化工,2013,40(8):132-134. 被引量:3
  • 2陈述,范亚,叶丽英,龙云飞.硫离子修饰的金纳米棒用于汞离子检测[J].光谱实验室,2011,28(4):1972-1974. 被引量:1
  • 3Liu J M, Wang H F, Yan X P. Analyst, 2011 136:3904.
  • 4Chen G Z,Jin Y, 45:137 Li F M,Liu J M, Wang W H, et al. Gold Bull, 2012.
  • 5Wang X X, et al. Sens Actuators B,2011 ,(155) :817.
  • 6Matthew Rex, Florencio E. Hemandez, Andres D, et al. Anal Chem,2006, 78:445.
  • 7Warinya Chemnasiria, Floreneio E. Hernande. Sens Actuators B, 2012, 173:322.
  • 8Emily C Heider, Khang Trieu, Anthony F T Moore, et al. Talanta, 2012, 99:180.
  • 9Huang H W, Qu C T, Liu X Y. Chem Commun,2011, 47, 6897.
  • 10Nikoobakht B, E1-Sayed M A. Chem Mater, 2003, 15: 1957.

二级参考文献18

  • 1Nolan E M,Lippard S J. Tools and Tactics for the Optical Detection of Mercuric Ion[J]. Chem. Rev. , 2008,108(9):3443--3480.
  • 2Long Y F, Jiang D L, Zhu X et al. Trace Hg^2+ Analysis Via Quenching of the Fluorescence of a CdS-Encapsulated DNA Nanocomposite[J]. Anal. Chem. , 2009,81 (7) : 2652-2657.
  • 3Chen H M, Peng H C, Liu R Set al. Controlling the Length and Shape of Gold Nanorods[J]. J. Phys. Chem. B, 2005,109 (42) : 19553-19555.
  • 4Sau T K, Murphy C J. Seeded High Yield Synthesis of Short Au Naaorods in Aqueous Solution[J]. Langmair, 2004,20 (15): 6414-6420.
  • 5Jiang X C, Brioude A, Pileni M P. Gold Nanorods.. Limitations on Their Synthesis and Optical Propertles[J]. Colloids Surface A, 2006,277(1-3) : 201-206.
  • 6Georgopoulos P G , Roy A , Yonone-Lioy M .I , et al. J. Toxicol. Environ. Health, B2001, 4: 341-394.
  • 7Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linkedgoldnanoparticle assemblies[J]? J. Am. Chem. Soc., 2003, 125: 1643-1654.
  • 8Lee J S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg^2+) in Aqueous Media using DNA - Funetionalized Gold Nanoparticles[J]. Angew. Chem., hit. Ed., 2007, 46: 4093-4096.
  • 9Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine[J]. Angew. Chem., Int. Ed., 2010, 49: 3280.
  • 10ZhouY, Wang S, ZhangK, etal. Angew. Chem., Int. Ed., 2008, 47: 7454-7456.

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部