期刊文献+

利用完备差集构造QC-LDPC码 被引量:5

Constructing QC-LDPC Codes by Using Perfect Difference Families
下载PDF
导出
摘要 针对准循环低密度奇偶校验(QC-LDPC)码中循环置换矩阵的移位次数的确定问题,提出了一种利用组合设计中完备差集(PDF)构造QC-LDPC码的新颖方法。当循环置换矩阵的维度大于一定值时,该方法所构造的规则QC-LDPC码围长至少为6,具有灵活选择码长和码率的优点,且所需的存储空间更少,降低了硬件实现的复杂度。仿真结果表明:在误码率为10-5时,所构造的码率为3/4的PDF-QC-LDPC(3136,2352)与基于最大公约数(GCD)构造的GCD-QC-LDPC(3136,2352)码和基于循环差集(CDF)构造的CDF-QC-LDPC(3136,2352)码相比,其净编码增益(NCG)分别有0.41 d B和0.32 d B的提升;且在码率为4/5时,所构造的PDF-QC-LDPC(4880,3584)码比GCD-QC-LDPC(4880,3584)码和CDF-QC-LDPC(4880,3584)码的NCG分别改善了0.21 d B和0.13 d B。 For the problem of determining shift times of the circulant permutation matirx( CPM) in quasi-cy-clic low-density parity-check(QC-LDPC) codes,a novel construction method based on the perfect differ-ence family( PDF) among combinatorial mathematics is proposed. When the dimension of the CPM exceeds a certain particular value,the girth of the Tanner graph of QC-LDPC codes constructed by this method is at least six,and the proposed algorithm has high flexibility with respect to the design of code-length and code-rate. In addition,it has less requirement about storage space,so the complexity of the hardware implementa-tion is reduced. The simulation results show that the net coding gain(NCG) of the PDF-QC-LDPC(3136, 2352) code with the code-rate of 3/4 is respectively improved 1. 15 dB and 0. 58 dB than those of the GCD-QC-LDPC(3136,2352) code based on the greatest common divisor(GCD) and the CDF-QC-LDPC(3136, 2352) code based on the cyclic difference family(CDF) at the bit error rate(BER) of 10-5. In addition,the NCG of the proposed PDF-QC-LDPC(4880,3584) code is improved 0. 21 dB and 0. 13 dB than those of the GCD-QC-LDPC(4880,3584) code and the CDF-QC-LDPC(4880,3584) code with the same conditions correspondingly with the code-rate of 4/5 and the BER of 10-5 .
出处 《电讯技术》 北大核心 2016年第5期471-475,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61472464) 重庆市基础与前沿研究计划项目(cstc2015jcyj A0554)~~
关键词 准循环低密度校验码 循环置换矩阵 完备差集 净编码增益 quasi-cyclic low-density parity-check code circulant permutation matirx perfect difference family net coding gain
  • 相关文献

参考文献13

  • 1MACKEY D J C,NEAL R M. Near Shannon limit per-formance of low-density parity-check codes[J]. Elec-tronics Letters,1996,33(6):1645-1646.
  • 2JIANG X,XIA X G,LEEM H. Efficient progressive edge-growth algorithm based on chinese remainder theorem[J]. IEEE Transactions on Communications,2014,62(2):442-451.
  • 3郑丹玲,穆攀,田凯,袁建国.利用遗传算法构造QC-LDPC码[J].电讯技术,2015,55(4):355-359. 被引量:3
  • 4LAN L,SHU L. Construction of quasi-cyclic LDPC codesfor AWGN and binary erasure channels:a finite field ap-proach [J]. IEEE Transactions on Communications,2007,53(7):2429-2458.
  • 5KAMIYA N.High-rate quasi-cyclic low-density parity-checkcodes derived from finite affine planes[J]. IEEE Transactionson Information Theory,2007,53(4):1444-1459.
  • 6VASIC B,MILENKOVIC O. Combinatorial constructionsof low-density parity-check codes for iterative decoding[J]. IEEE Transactions on Information Theory,2004,50(6):1156-1176.
  • 7AMMAR B,HONARY B,KOU Y,et al. Construction oflow density parity-check codes based on balanced incom-plete block designs[J]. IIEEE Transactions on Informa-tion Theory,2004,50(6):1257-1268.
  • 8FOSSORIER M P C. Quasi - cyclic low density paritycheck codes from circulant permutation matrices [J].IEEE Transactions on Information Theory,2004,50(8):1788-1793.
  • 9PARK H,HONG S,NO J S,et al. Construction of highrateregular quasi - cyclic LDPC codes based on cyclicdifference families[J]. IEEE Transactions on Communi-cations,2013,61(8):3108-3113.
  • 10ESMAEILI M,JAVEDANKHERAD M. 4-cycle free LDPCcodes based on difference sets[J]. IEEE Transactions onCommunications,2012,60(12):3579-3586.

二级参考文献12

  • 1Fossorier M P C. Quasi-cyclic low-density parity-checkcodes from circulant permutation matrices[J]. IEEE Trans-actions on Information Theory,2004,50(8):1788-1793.
  • 2Huang Qin,Diao Qinju. Cyclic and Quasi-Cyclic LDPCCodes on Constrained Parity-Check Matrices and TheirTrapping Sets [J]. IEEE Transactions on InformationThrory,2012,59(1):2648-2671.
  • 3Wang Lei, Zhang Xing. QC - LDPC Codes with GirthEight Based on Independent Row-Colunm Mapping Se-quence [J]. IEEE Communications Letters, 2013, 17(11):2140-2143.
  • 4Jiang Xueqin,Xia Xianggen. Efficient Progressive Edge-Growth Algorithm Based on Chinees Remainder Theorem[J]. IEEE Transactions on Communications,2014,62(2):442-451.
  • 5Sharon E,Litsyn S. Constructing LDPC codes by errorminimization progressive edge growth[J]. IEEE Transac-tions on Communications,2008,56(3):359-368.
  • 6Tanner R M. Minimum-distance bounds by graph analy-sis[J]. IEEE Transactions on Information Theory,2001,47(2):808-821.
  • 7Hu X Y,Vetterli M. Low-delay low-complexity errorcorrectingcodes on sparse graphs[D]. Switzerland:SwissFederal Insitute of Technology Lausanne(EPFL),2002.
  • 8Yu Kou,Shu Lin,Fossorier M P C. Low-Density Parity-Check Codes Based on Finite Geometries[J]. IEEE Trans-actions on Information theory,2001,47(7):2711-2736.
  • 9Gal1ager R G. Low-density parity-check codes[J]. IEEETransactions on Information Theory,1962(8):21-28.
  • 10MacKay D J C. Good error-correcting codes based onvery sparse matrices[J]. IEEE Transactions on Infor-mation Theory,1999,45(2):399-431.

共引文献2

同被引文献25

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部