期刊文献+

以非负矩阵分解提取局部特征的SAR目标稀疏表示分类 被引量:2

Sparse Representation Classification of SAR Targets with Local Features Extracted by Non-negative Matrix Factorization
下载PDF
导出
摘要 合成孔径雷达(SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法。采用Gotcha项目民用车辆目标的实测数据进行了验证,结果显示在不同信噪比条件下该方法的分类正确率均优于广泛采用的由降采样、随机投影、主成分分析提取低维数特征的稀疏表示分类方法,表明了该方法的性能优势。另外,还通过实验对比分析了非负约束的稀疏表示与标准稀疏表示在分类性能上的差别,结果显示非负约束的稀疏表示导致分类正确率下降,故针对分类问题不宜在稀疏表示时进行非负约束。 Synthetic aperture radar( SAR) target classification is one of the core functions in automatic tar-gets recognition( ATR) system. It is essential in battle field surveillance,too. According to the characteris-tics that SAR images have prominent local scattering,it is proposed to perform non-negative matrix factori-zation( NMF) on the training samples to get low dimensional local encoding matrix,and subsequently per-form sparse representation classification( SRC) based on this encoding matrix. Processing results on real data of civilian vehicle targets in Gotcha project demonstrate that the proposed method outperforms other di-mension reduction methods such as down-sampling,random projection and principle components analysis, which are adopted with SRC. In this way,superiority of the method is revealed. Besides,the performances of SRC with and without non-negativity constraints are compared and analyzed by experiments. The experiment result reveals that SRC with non-negativity constraints leads to degradation of classification performance. In this way,it is unadvisable to include non-negativity constraint with regard to classification problem.
作者 张之光 雷宏
出处 《电讯技术》 北大核心 2016年第5期495-500,共6页 Telecommunication Engineering
关键词 合成孔径雷达 稀疏表示 目标分类 非负矩阵分解 局部特征提取 synthetic aperture radar(SAR) sparse representation targets classification non-negative matrix factorization(NMF) local feature extraction
  • 相关文献

参考文献13

  • 1ELAD M. Sparse and redundant representations [M].New York:Springer-Verlag,2010.
  • 2WRIGHT J,YANG A Y,GANESH A,et al. Robust facerecognition via sparse representation [J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 3THIAGARAJAN Y J,RAMAMURTHY K N,KNEE P,etal. Sparse representations for automatic target classifica-tion in SAR image[C] / / Proceedings of 4th InternationalSymposium on Communications,Control and Signal Pro-cessing(ISCCSP). Limassol,Cyprus:IEEE,2010:1-4.
  • 4XING X W,JI K F,ZOU H X,et al. Sparse representa-tion based SAR vehicle recognition along with aspect an-gle [J]. The Scientific World Journal,2014(3):1-10.
  • 5XING X,JI K,ZOU H,et al. Ship classification in Terra-SAR-X images with feature space based sparse represen-tation [J]. IEEE Geoscience and Remote Sensing Let-ters,2013,10(6):1562-1566.
  • 6丁军,刘宏伟,王英华.基于非负稀疏表示的SAR图像目标识别方法[J].电子与信息学报,2014,36(9):2194-2200. 被引量:11
  • 7龙泓琳,皮亦鸣,曹宗杰.基于非负矩阵分解的SAR图像目标识别[J].电子学报,2010,38(6):1425-1429. 被引量:25
  • 8高馨,曹宗杰.基于稀疏约束的SAR目标特征提取方法研究[J].雷达科学与技术,2012,10(6):618-623. 被引量:6
  • 9LEE D D,SEUNG H S. Learning the parts of objects bynon-negative matrix factorization [J]. Nature,1999,401(6755):788-791.
  • 10ASIF M S,ROMBERG J. Sparse recovery of streamingsignals using-homotopy[J]. IEEE Transactions on Sig-nal Processing,2014,62(16):4209-4223.

二级参考文献53

  • 1韩萍,吴仁彪,王兆华.基于KFD准则的SAR目标特征提取与识别[J].现代雷达,2004,26(7):27-30. 被引量:11
  • 2陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 3Lee D D,Seung H S,Learing the parts of objects by non-negative matrix factorization[J].Natrue,1999,401:788-791.
  • 4Guillametd,Vitria J.Non-negative matrix factorization for face recognition[A].5th Catalonian Conference on AI CCIA[A].Berlin:Speringer-Verlag,2002.336-344.
  • 5Zhi Guo-he,Jun Lu,Kuang Gang-yao.A fast SAR target recognition approach using PCA features[A].Proceeding of the Fourth International Conference on Image and Graphics[C].Washington:IEEE Computer Society,2007.580-585.
  • 6Qun Zhao,Jose C Principe.Support vector machines for SAR automatic recognition[J].IEEE Transaction on Aerospace and Electronic Systems,2001,37(2):643-654.
  • 7Mika S,Ratsc G,Westen J,Scholkpf B,et al.Fisher discriminant analysis with kernel[A].IEEE Neural Networks for Signal Processing[C].NJ:IEEE,1999.41-48.
  • 8Paragios N,Deriche R.Geodesic active regions and level set methods for motion estimation and tracking[J].Computer Vision and Image Understanding,2005,97(3):259-282.
  • 9Ross T D,Worrall S W,Velten V J,et al.Standard SAR ATR evaluation experiments using the MSTAR public release data set[A].Algorithms for Synthetic Aperture Radar Imagery V[C].Orlando:SPIE,1998.566-573.
  • 10Cai Deng, He Xiaofei,Han Jiawei,et al. Graph Reg-ularized Nonnegative Matrix Factorization for DataRepresentation [ J], IEEE Transactions on PatternAnalysis and Machine Intelligence,2011,33 ( 8 ):1548-1560.

共引文献41

同被引文献8

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部