期刊文献+

单位方体上沿曲面的振荡积分的Sobolev有界性 被引量:1

The boundedness of certain oscillatory integrals on unit square along surfaces on Sobolev spaces
下载PDF
导出
摘要 研究了欧氏空间R^2中单位方体Q^2=[0,1]2上沿曲面(t,s,t^ks^j)的振荡奇异积分算子-Tkα,βf(x,y,z)=∫f(x-t,y-s,z-tsj)e-itβ1-sβ2t-1-α-α1 s-1 2 dtdsQ2从Sobolev空间Lp r(R3)到Lp(R3)中的有界性,其中β_1>α_1≥0,β_2>α_2≥0,(k,j)∈R^2.最后,得到了乘积空间上粗糙核奇异积分算子的Sobolev有界性. Let Q2= [0,1]2be the unit square in two dimension Euclidean space R^2. It was studied the boundedness properties from Sobolev spaces Lpr( R3) to Lp( R3) of the oscillatory integral operator τα,βdefined on the set S( R^3) of Schwartz test funtions f by-Tα,βf( x,y,z) =∫f( x- t,y- s,z- tksj) e- itβ1- sβ2t-1- α α1 s-1-2 dtds,Q2where( t,s,tksj) is a surface on R3,β1> α1≥0,β2> α2≥0 and( k,j) ∈R^2. As applications,some Sobolev boundedness results of rough singular integral operators on the product spaces were obtained.
出处 《浙江师范大学学报(自然科学版)》 CAS 2016年第2期129-138,共10页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11271330 11471288) 浙江省自然科学基金资助项目(010015)
关键词 超奇异振荡积分算子 SOBOLEV空间 有界性 多参数 hyper singular oscillatory integral Sobolev space boundedness multiparameter
  • 相关文献

参考文献3

二级参考文献18

  • 1Zielinski, M.: Highly Oscillatory Singular Integrals along Curves, Ph.D Dissertation, University of Wiscons- in-Madison, Madison WI, 1985.
  • 2Chandarana, S.: L^P-bounds for hypersingular integral operators along curves. Pacific J. Math., 175(2), 389-416 (1996).
  • 3Chandarana, S.: Hypersigular integral operators along space curves. Preprint.
  • 4Chen, J. C., Fan, D., Wang, M., et al.: LP bounds for oscillatory hyper-Hilbert transform along curves. Proc. Amev. Math. Soc., 136(9), 3145-3153 (2008).
  • 5Chen, Y. P., Ding, Y., Fan, D.: A parabolic singular integral operator with rough kernel. J. Aust. Math. Soe., 84(2), 163-179 (2008).
  • 6Stein, E. M.: Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N J, 1993.
  • 7Chandarana Sharad,L^p-bounds for hypersingular integral operators along curves[J],Pacific Journal of Mathematics,1996,175(2):389-416.
  • 8Marshall J,Fractional integrals of imaginary order supported on convex curves,and the doubling property[J],Rocky Mountain J.of Math,1998,28:287-302.
  • 9Zielinski M,Highly Oscillatory Singular Integralsalong Curves[D],Ph.D Dissertation,University of Wisconsin-Madison,Madison WI,1985.
  • 10Per Sj?lin.AnH p inequality for strongly singular integrals[J]. Mathematische Zeitschrift . 1979 (3)

共引文献11

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部