摘要
Dynamic friction is a critical process of crustal earthquake ruptures. Recent experimenta1 and theoretica1 progress in rock friction have demonstrated that most continental earthquakes are associated with stick-slip in the brittle field of the crust and that only dynamic instability with fast slip is related to seismicity. Dynamic stability will be influenced by frictional parameters a-b, a, stiffness K, characteristic displacement L, slip rate history (velocity weakening), normal stress history (pressure strengthening), and temperature, which is described by the frictional constitutive laws. Velocity-weakening (a-b<0) can cause dynamic instability if the medium stiffness is below the critical stiffness (X/Kc<1), while velocity-strengthening enhances the frictional stability.The most recent experimental evidence of rock friction will be systematically reviewed in this paper.
Dynamic friction is a critical process of crustal earthquake ruptures. Recent experimenta1 and theoretica1 progress in rock friction have demonstrated that most continental earthquakes are associated with stick-slip in the brittle field of the crust and that only dynamic instability with fast slip is related to seismicity. Dynamic stability will be influenced by frictional parameters a-b, a, stiffness K, characteristic displacement L, slip rate history (velocity weakening), normal stress history (pressure strengthening), and temperature, which is described by the frictional constitutive laws. Velocity-weakening (a-b<0) can cause dynamic instability if the medium stiffness is below the critical stiffness (X/Kc<1), while velocity-strengthening enhances the frictional stability.The most recent experimental evidence of rock friction will be systematically reviewed in this paper.