摘要
“在R中,除了空集和全空间以外,再没有既开又闭的集合”这一结论推广到一股的线性赋范空间(S,||·||)中,并证明出一个度量空间不存在既开又闭的集合的充要条件.
This wticle spreads the conclusion that there is no set both open and closeexcept nul set and universal set in R to the general normal linear space,and aiso gives the ample and necessary conditions aboot tha there existsno set both open and close in a metric space.
出处
《丹东师专学报》
1997年第1期8-9,共2页
Journal of Dandong Teachers College
关键词
度量空间
线性赋范空间
紧集
收敛
连通的
Metric space
normal linear space
compact set
convergence
connected