期刊文献+

不同牧草在铀胁迫下生长及铀富集的比较研究 被引量:12

Comparative Study on the Growth and Uranium Enrichment in Different Grasses
下载PDF
导出
摘要 为考察牧草在铀污染土壤植物修复中的潜在应用价值,对24种牧草进行铀胁迫下的种子萌发分析,再通过盆栽措施考察优势牧草在铀胁迫下的苗期生长及铀富集情况。结果表明,有7种牧草种子在铀胁迫下具有较好的发芽能力,<50 mg·L^(-1)铀对种子萌发具有一定的促进作用,>100 mg·L^(-1)则有明显的抑制作用。不同铀浓度条件下牧草各品种之间的生长差异显著。通过对牧草苗期的铀富集情况分析,发现在150 mg·kg^(-1)和50 mg·kg^(-1)铀胁迫下,单盆铀富集量较大的分别为多花黑麦草(10.36 mg·pot^(-1))和单年生黑麦草(3.58 mg·pot^(-1));多花黑麦草在100 mg·kg^(-1)铀胁迫下的转移系数最高(0.87),而苏丹草在各浓度铀胁迫下的转移系数相对较低。因此,针对不同情况铀污染土壤可选用不同牧草进行生态修复。本研究为铀污染土壤的生物治理提供了新的资源和理论依据。 In order to investigate the potential application of grass seeds in uranium contaminated soil phytoremediation,a set of 24 species were selected to study the grass seeds germination under uranium stress,and pot test was conducted to study the growth and uranium enrichment ability of predominant pastures. The results showed that seven species of grass seeds had a relatively high germination rates under uranium stress condition. The concentration of uranium,less than 50 mg·L^-1,had the promotion effect on seed germination rate,while the concentration of uranium,more than 100mg·L^-1,had an obvious inhibition effect. The growth of different species of grass plant was significantly different under different uranium concentration. The enrichment condition of the grasses to uranium in the seedling stage was studied.And the results also showed that Lolium multiflorum had a high pot accumulation rate( 10. 36 mg uranium per pot) at uranium concentration of 150 mg·kg^-1,while Lolium perenne had the highest pot accumulation( 3. 58 mg uranium per pot) at uranium concentration of 50 mg·kg^-1. And L. multiflorum had the highest transfer factor( 0. 87) at uranium concentration of 100 mg·kg^-1,while Sorghum sudanense had the lowest value in each concentration level. In conclusion,different specie grasses can be selected to remediate uranium-contaminated soil according to the soil conditions. This study provided some new biological resources and a theoretical basis for the bioremediation to uraniumcontaminated soil.
出处 《核农学报》 CAS CSCD 北大核心 2016年第3期548-555,共8页 Journal of Nuclear Agricultural Sciences
基金 国家核设施退役及放射性废物治理科研重点项目(14ZG6101) 国民核生化灾害防护国家重点实验室开放基金项目(SKLNBC2015-04) 核废物与环境安全国防重点学科实验室基金(15yyhk05)
关键词 铀污染土壤 植物修复 牧草 发芽率 富集 uranium soil pollution phytoremediation grass germination rate enrichment
  • 相关文献

参考文献28

  • 1国家环境保护局 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990..
  • 2聂小琴,丁德馨,李广悦,高斌,吴彦琼,胡南,刘玉龙.某铀尾矿库土壤核素污染与优势植物累积特征[J].环境科学研究,2010,23(6):719-725. 被引量:46
  • 3Chander K, Dyckmans J, Joergensen R G. Different source of heavymetals and their long-term effects on soil microbial properties[J]. Biology and Fertility of Soils, 2001, 34(4): 241-247.
  • 4Kawakami F, Tokiwai M, Fujii Y. Plant Designing of ion exchange chemical uranium enrichment and its non-proliferation aspects[J]. Progress in Nuclear Energy, 2011, 53(7): 974-979.
  • 5CHEN Su-hua, ZHOU Qi-xing, SUN Tie-heng, LI Pei-jun (Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China..Rapid ecotoxicological assessment of heavy metal combined polluted soil using canonical analysis[J].Journal of Environmental Sciences,2003,15(6):854-858. 被引量:18
  • 6Kashem M A, Singh B R. Heavy metal contamination of soil and vegetation in the vicinity of industries in bangladesh[J]. Water Air & Soil Pollution Focus, 1999, 115(1/2/3/4): 347-361.
  • 7唐永金,罗学刚.植物吸收和富集核素的研究方法[J].核农学报,2011,25(6):1292-1299. 被引量:21
  • 8Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting K C, Ensley B. Removal of uranium from water using terrestrial plants[J]. Environmental Science & Technology, 1997, 31(12): 3468-3474.
  • 9黄德娟,徐卫东,罗明标,曾浩,张玉叶,张红英,熊小文,耿道行.某铀矿九种优势草本植物铀的测定[J].环境科学与技术,2011,34(3):29-31. 被引量:30
  • 10Gavrilescu M, Pavel L V, Cretescu I. Characterization and remediation of soils contaminated with uranium[J]. Journal of Hazardous Materials, 2009, 163(2/3): 475-510.

二级参考文献321

共引文献401

同被引文献273

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部