期刊文献+

一种多特征联合的运动目标检测算法 被引量:3

Moving Object Detection Algorithm on Multi-feature Combination
下载PDF
导出
摘要 高斯混合模型已经成为对视频利用背景减除法进行运动目标检测的最多的一种背景建模模型,也成为一种标准模型。首先对高斯混合模型的理论框架及其性能进行了分析,分析了高斯混合模型仍需要解决的问题,并提出一种高斯混合模型联合多特征的运动目标检测算法,实验表明该算法具有较好的目标检测效果以及环境自适应性。 Gaussian mixture modeling is the most used method for background modeling of the implementation of background subtraction in video sequences,and has become the standard method.The theory framework and function of Gauss mixture model are analyzed.The problems of Gauss mixture model which still need to be solved are analyzed,and a Gauss mixture model combined with multiple features is proposed,the experiments show that the algorithm has better effect of object detection and environmental adaptability.
出处 《计算机与数字工程》 2016年第4期638-641,705,共5页 Computer & Digital Engineering
基金 广东高校优秀青年创新人才培养计划项目(编号:2013LYM_0114) 广州大学华软软件学院重大科研培育项目 广东大学生科技创新培育专项资金项目资助
关键词 高斯混合 目标检测 多特征联合 Gauss mixture model objects detection multi-feature combination
  • 相关文献

参考文献14

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2Lipton A,Fujiyoshi H,Patil R. Moving target classifi-cation and tracking from real-time video [C]//Proc.IEEE Workshop on Applications of Computer Vision,Princeton, NJ,1998:8-14.
  • 3Anderson C,Bert P,Vander W G. Change detectionand tracking using pyramids transformation techniques[C]//Proc. SPIE Conference on Intelligent Robots andComputer Vision, Cambridge, MA,1985,579:72- 78.
  • 4Meyer D,Denzler J,Niemann H. Model based extraction of articulated objects in image sequences for gait a-nalysis [ C] //Proc. IEEE International Conference onImage Processing, Santa Barbara, California, 1997; 78-81.
  • 5代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 6Piccardi M. Background subtraction techniques: a re-view[C]//Proc. IEEE International Conference on Sys-tems, Man and Cybernetics,2004: 3099-3104.
  • 7白向峰,李艾华,李喜来,李仁兵.新型背景混合高斯模型[J].中国图象图形学报,2011,16(6):983-988. 被引量:29
  • 8Stauffer C, Grimson W. E L. Learning patterns of ac-tivity using real-time tracking [J].IEEE Transactionson Pattern Recognition Machine Intelligence, 2000, 22(8):747-757.
  • 9张恒,胡文龙,丁赤飚.一种自适应学习的混合高斯模型视频目标检测算法[J].中国图象图形学报,2010,15(4):631-636. 被引量:22
  • 10孟益方,欧阳宁,莫建文,张彤.基于高斯混合模型的阴影消除算法[J].计算机仿真,2010,27(1):210-213. 被引量:5

二级参考文献229

  • 1齐郑,杨以涵.中性点非有效接地系统单相接地选线技术分析[J].电力系统自动化,2004,28(14):1-5. 被引量:151
  • 2贾清泉,蔺道深,袁石文.基于Matlab的一种新型消弧线圈的仿真[J].继电器,2006,34(16):49-53. 被引量:4
  • 3E Hanninen, M Lehtonen. Characteristics of earth faults in electrical distribution networks with high impedance earthing[ J]. Electric Power System Research, 1998,44(3) :155 -161.
  • 4Chris Stauffer, Eric W, Grimson L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 5Kaewtrakulpong Pakorn, Bowden Richard. An improved adaptive background mixture model for real-time tracking with shadow detection[ C ]//Proceedings of the 2nd European Workshop Based on Advanced Video-based Surveillance Systems Providence, USA: kluwer Academic Publishers, 2001 : 149-158.
  • 6Zoran Zivkovic. Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (5) : 651-656.
  • 7Lee Dar-Shyang. Effective gaussian mixture learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 827-832.
  • 8Michael Harvine, Gaile Gordon, John Woodfill. Foreground segmentation using adaptive mixture models in color and depth [ C ]//IEEE Workshop on Detection and Recognition of Events in Video. New York : Computer Science Press, 2001 : 3-11.
  • 9Thongkamwitoon T, Aramvith S, Chalidabhongse T H. An adaptive real-time background subtraction and moving shadows detection[ C ]//IEEE International Conference on Multimedia and Expo. New York: IEEE, 2004, 2: 1459-1462.
  • 10Chao Yuyan, Kenji Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Intelligent Transaction on Image Processing, 2008, 17(5) : 749-756.

共引文献597

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部