期刊文献+

太阳能喷射-压缩复合制冷系统的实验及仿真

Experiment and simulation of solar ejector-compression combined refrigeration system
下载PDF
导出
摘要 建立了太阳能喷射-压缩复合制冷系统的实验研究平台,基于EES软件程序进行系统稳态仿真,实验验证了仿真模拟程序的正确性,分析了不同发生温度、中间温度对系统性能的影响。研究表明,在中间温度和冷凝温度不变的情况下,随着发生温度的升高,总功率先降低后升高,系统EER先升高后降低;同时,系统COP呈先逐渐升高而后降低的趋势。在研究范围内,最优发生温度工作区域为78~80℃,此时,系统的总耗功量最小;最优中间温度工作区域为7~10℃,此时,系统制冷量达2 245 W,EER最高为3.39。 An experiment and simnlation of solar ejector-compression combined refrigeration system were conduced, and the results of the simulation model was verified with experimental data. The influence of the generator temperature and middle-temperature on solar ejector-compression combined refrigeration system has been studied. Research shows that: with the increasing of generator temperature, it is found that the COP and the EER increase first and then decline, and the power consumption decreases first and then increases at the same time. In addition, it was seen that there exists the optimal generator temperature and the optimal middle-temperature, and the optimal generator temperature and middle-temperature are between 78 and 80℃ ,7 and 10℃ over the range of research conditions respectively. The minimum total power consumption can be obtained, when the optimal generator temperature are from 78 to 80℃, and the maximun cooling capacity and EER can reach to 2 245 W, 0. 34 respectively when the optimal middle- temperature and from 7 to 10℃.
出处 《土木建筑与环境工程》 CSCD 北大核心 2016年第2期84-90,共7页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金(51176207 51306214) 河南省高校科技创新人才计划(14HASTIT003) 河南省省级骨干教师基金(2013GGJS-114))~~
关键词 喷射-压缩复合制冷 仿真 最优中间温度 最优发生温度 ejector-compression combined refrigeration system simulation the optimal middle-temperaturethe optimal generator temperature
  • 相关文献

参考文献17

  • 1DORANTES R, ESTRADA C A, PILATOWSKY I.Mathematical simulation of a solar ejector compression refrigeration system[J]. Applied Thermal Energy,1996, 16(8): 669-675.
  • 2ALEXIS G K, KARAYIANNIS E K. A solar eiector cooling system using refrigerant R134a in the Athens area [J]. Renewable Energy, 2005, 30 ( 9 ).. 1457 1469.
  • 3ALEXIS G K, KARAYIANNIS E K. A solar eiector cooling system using refrigerant R134a in the Athens [J].Renewable Energy, 2005, 30 ( 9 )..1457- 1469.
  • 4CLEMENS P, AHMED H, AI.IB H. Experimental study on the per{ormance of a solar driven steam jet ejector chiller [J]. Energy Conversion and Management, 2008, 49(11).. 3318-3325.
  • 5BOGDAN M, DIACONU S V, ARMANDO C O. Numerical simulation of a solar assisted ejector air conditioning system with cold storage [J]. Energy, 2011, 36(2): 1280-1291.
  • 6BOGDAN M D. Energy analysis of a solar assisted eiector cycle air conditioning system with low temperature thermal energy storage[J].Renewable Energy, 2012, 37(1): 266- 276.
  • 7YU J L, LI Y Z. A theoretical study of a novel regenerative ejector refrigeration cycle [J]. International Journal of Refrigeration, 2007, 30 (3) : 464 470.
  • 8ZHANG B, SONG X T, LV J S, et al. Study on the key ejector structures of the waste heat-driven ejector air conditioning system with R236fa as working fluid [J]. Energy and Buildings, 2012, 49 ( 1 ): 209-215.
  • 9CHIDAMBARAM L A, RAMANA A S, KAMARAJ G. Review of solar cooling methods and thermal storage options[J].Renewable and Sustainable Energy Reviews, 2011, 15(6): 3220-3228.
  • 10AL A, HWANG Y, RAI)ERMACHER R. Review of solar thermal air conditioning technologies [ J ]. International Journal of Refrigeration, 2013, 36 ( 11 ) : 1 19.

二级参考文献11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部