期刊文献+

孪生支持向量机的特征选择研究 被引量:9

Research on feature selection of twin support vector machine
下载PDF
导出
摘要 针对机器学习中数据分类的特征选择问题,提出了孪生支持向量机(Twin support vector machine,TWSVM)的另一种方法:LFTWSVM.首先求解TWSVM优化问题后将得到两个权重向量,先将这两个权重向量进行归一化处理,再把处理后的两个权重向量取绝对值相加,得到一个总权重向量,最后将总权重向量进行特征选择.通过实验,将得到的数据结果和TWSVM特征选择方法进行比较,LFTWSVM特征选择方法具有一定的优势. Aiming at the feature selection problem of data classification in machine learning a new method of twin support vector machine(TWSVM)is proposed:LFTWSVM Firstly,two weight vectors can be gotten after the SVM optimization problem is solved.Then,these two weight vectors will be normalized,and be summed together with their absolute values.A total weight vector can be gotten and features will be selected from the total weight vector.The experiments show that the feature selection method in LFTWSVM has rather advantages compared with the TWSVM.
出处 《浙江工业大学学报》 CAS 北大核心 2016年第2期146-149,共4页 Journal of Zhejiang University of Technology
关键词 机器学习 特征选择 支持向量机 权重向量 machine learning feature selection support vector machine weight vector
  • 相关文献

参考文献9

  • 1郑莉莉,黄鲜萍,梁荣华.基于支持向量机的人体姿态识别[J].浙江工业大学学报,2012,40(6):670-675. 被引量:15
  • 2陈敏智,汤一平.基于支持向量机的针对ATM机的异常行为识别[J].浙江工业大学学报,2010,38(5):546-551. 被引量:9
  • 3张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 4TAN J Y, ZHANG Z Q, ZHEN L, et al. Adaptive feature se- lection via a new version of support vector machine[J]. Neural computing and applications, 2013,23(3/4) : 937-945.
  • 5SHAO Yanhai, DENG Naiyang, CHEN Weijie, et al. Im- proved generalized eigenvalue proximal support vector Machine [J]. IEEE signal processing letters,2013,20(3):213-216.
  • 6SHAO Yanhai, WANG Zhen, CHEN Weijie, et al. A regu- larization for the projection twin support vector machine[J]. Knowledge-based systems, 2013,37 : 203-210.
  • 7SHAO Yanhai, ZHANG Chunhua, WANG Xiaobo, et al. Im- provements on twin support vector machines[J]. IEEE trans- actions on neural networks,2011,Z2(6) :962-968.
  • 8CHEN Yiwei, LIN C H. Combine SVMs with various fea- ture selection strategies[J]. Studies in fuzziness and soft computing, 2006,207 : 315-324.
  • 9ISABELLE G, JASON W, STEPHEN B, et al. Gene selec- tion for cancer classification using support vector machines [J]. Machine learning, 2002,46 : 389-422.

二级参考文献75

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2刘相滨,向坚持,王胜春.人行为识别与理解研究探讨[J].计算机与现代化,2004(12):1-5. 被引量:12
  • 3陶焜,吴思,林守勋,张勇东.体育视频全景图合成技术[J].计算机辅助设计与图形学学报,2005,17(11):2552-2557. 被引量:9
  • 4汤一平,叶永杰,朱艺华,顾校凯.智能全方位视觉传感器及其应用研究[J].传感技术学报,2007,20(6):1316-1320. 被引量:49
  • 5STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999 : 246-252.
  • 6PORIKLI F. Detection of temporarily static regions by processing video at different frame rates[C]//IEEE Conference on Advanced Video and Signal Based Surveillance. 2007 :236-241.
  • 7CUCCHIARA R, GRANA C, PICCARDI M, et al. Improving shadow suppression in moving object detection with HSV color information[C]//IEEE Intelligent Transportation Systems-Proceedings. 2001 : 334-339.
  • 8张小骏,黄维尧,刘志镜,等.基于加权Hu不变矩的人体异常行为识别[R].上海:同济大学,2007:541-543.
  • 9Kononenko I. Estimation attributes: analysis and extensions of RELIEF. In: Proc. of the 1994 European Conf. on Machine Learning, 1994. 171-182
  • 10Marko R S,Kononenko I. Comprehensible interpretation of relief estimates. In:The Eighth Intl. Conf. on Machine Learning,2001.443-440

共引文献39

同被引文献65

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部