期刊文献+

基于随机矩阵的新型频谱盲感知方法 被引量:3

A Novel Blind Spectrum Sensing Algorithm Based on Random Matrix
下载PDF
导出
摘要 针对传统频谱感知算法需要预先估计噪声方差且当存在噪声不确定度时,检测性能降低的特点,提出一种基于随机矩阵的改进型频谱盲感知算法(M-CMME)。该算法通过分析协方差矩阵最大特征值极限分布特性,分析并利用采样协方差矩阵特征值与信号平均能量的关系,推导设定虚警概率条件下判决门限的闭式表达式。该算法不需要预先知道授权用户信号的先验知识,且能够有效克服噪声不确定度的影响。仿真结果显示,当噪声方差估计存在偏差的情况下,该算法具有较强的鲁棒性,且在较少采样点、低信噪比、较少阵元数情况下能够获得比CMME更优的检测性能。 In order to improve the detection performance of traditional spectrum sensing under low SNR,a spectrum sensing algorithm( M-CMME) is proposed. The proposed algorithm analyzes the characteristic of limiting eigenvalue distribution,analyzes and utilizes the relation of energy and eigenvalues of sample matrix and then deduces the form expression of decision threshold under constant false alarm ratio. The algorithm,we believe,does not need estimating the noise power and exhibits a good robustness against noise uncertainty. Simulation results show preliminarily that,when there is a deviation of the noise estimation,the algorithm can obtain strong robustness and this algorithm can get better detection performance than CMME with fewer samples,lower SNR and fewer antennas.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第2期262-267,共6页 Journal of Northwestern Polytechnical University
基金 2012航天科技支撑基金(2012HTXGD) 西北工业大学基础研究基金(3102014KYJD014)资助
关键词 频谱感知 特征值 噪声不确定度 随机矩阵理论 algorithm antenna array computer simulation covariance matrix eigenvalues and eigen functions estimation matrix algebra Matlab Monte Carlo methods wavelength blind spectrum sensing Constant false alarm ratio CMME CDF(cumulative distribution function) ED MDE MME(maxim minimum eigenvalue detection) PU RMT(random matrix theory) Wishart random matrix
  • 相关文献

参考文献11

  • 1Mitola J, Maguire G Q. Cognitive Radios: Making Software Radios More Personal[J]. IEEE Personal Communications, 1999, 6 (4) : 13-18.
  • 2Digham F F, Alouini M S, Simon M K. On the Energy Detection of Unknown Signals over Fading Channels[ J]. IEEE Trans on Wireless Communication, 2007, 55( 1): 21-24.
  • 3Cardoso L S, Debbah M, Bianchi P, et al. Cooperative Spectrum Sensing Using Random Matrix Theory[ C ]///International Sym- posium on Wireless Pervasive Computing, Santorini, 2008:334-338.
  • 4Zeng Y H, Koh C L, Liang Y CH. Maximum Eigenvalue Detection: Theory and Application[ C ]///IEEE International Confer- ence on Communications, Beijing, 2008 : 4160-4164.
  • 5曹开田,杨震.基于最小特征值的合作频谱感知新算法[J].仪器仪表学报,2011,32(4):736-741. 被引量:10
  • 6Zeng Yonghong, Liang Yingchang. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio [ J ]. IEEE Trans on Com- munications, 2009, 57 (6) : 1784-1793.
  • 7Zeng Yonghong, Liang Yingchang. Maximum-Minimum Eigenvalue Detection for Cognitiv Radio[ C ]//The 18'h Annual IEEE In- ternational Symposium on Personal, Indoor and Mobile Radio Communications, 2007:1-5.
  • 8王磊,郑宝玉,李雷.基于随机矩阵理论的协作频谱感知[J].电子与信息学报,2009,31(8):1925-1929. 被引量:18
  • 9Tulino A M, Verdu S. Random Matrix Theory and Wireless Communications [ M ]. Hanover, USA:Now Publisher Inc, 2004: 3-73.
  • 10By lain M. Johnstone On the Distribution of the Largest Eigenvalue in Principle Components Analysis [ J ]. Annals Statistics, 2001,29 (2) : 295-327.

二级参考文献17

  • 1Sahai A.Spectrum sensing:Fundamental limits and practical challenges,DySPAN 2005 tutorial part I[C].DySPAN 2005,Maryland,Nov 2005:1-138.
  • 2Cardoso L S,Debbah M,and Bianchi P.Cooperative spectrum sensing using random matrix theory[C].ISWPC,Santorini,7-9 May 2008:334-338.
  • 3Zeng Yong-hong and Liang Ying-chang.Maximum minimum eigenvalue detection for cognitive radio[C].The 18th Annual IEEE International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC'07),Athens,3-7 Sept.2007:1-5.
  • 4Tulino A M and Verdu S.Random Matrix Theory and Wireless Communications[M].Boston:Now Publishers Inc,2004:168-189.
  • 5Mehta M L.Random Matrices[M].Third edition,London:Academic Press,2006:394-438.
  • 6Bai Z D and Silverstein Jack W.Spectral Analysis of Large Dimensional Random Matrices[M].Beijing:Science Press,2006:283-357.
  • 7Bai Z D.Methodologies in spectral analysis of large dimensional random matrices,a review[J].Statistica Sinica,1999,9(1):611-677.
  • 8Johnstone I M.On the distribution of the largest eigenvalue in principle components analysis[J].The Annals of Statistics,2001,29(2):295-327.
  • 9Johansson K.Shape fluctuations and random matrices[J].Communications in Mathematical Physics,2000,209(2):437-476.
  • 10Tracy C A and Widom H.On orthogonal and symplectic matrix ensembles[J].Communications in Mathematical Physics,1996,177(3):727-754.

共引文献26

同被引文献14

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部