期刊文献+

邻苯二硫酚桥联双核双氮过渡金属配合物N—N键活化规律的理论研究 被引量:9

Theoretical Study on N-N Activation by Thiolate-bridged Dinuclear Dinitrogen Transition-metal Complexes
原文传递
导出
摘要 采用密度泛函理论方法研究了具有仿生固氮结构的两类化合物[Cp*Fe(μ-η^2η^2bdt)(μ-η^1η^1Me N=NMe)Fe Cp*]以及[Cp*Fe(μ-SEt)2(μ-η^1η^1Me N=NMe)Fe Cp*]的90种不同结构,调变过渡金属中心,研究不同自旋态下(单重态和三重态)具有side-on或end-on配位键型的双核双氮过渡金属配合物,基于计算结果分析了BDT(邻苯二硫酚)和乙基类型配体的不同过渡金属配合物活化双氮的程度.研究结果表明,N—N键活化程度与配合物过渡金属中心所在周期存在密切关系,更高周期对双氮的活化程度更高,同周期金属过渡金属配合物对N—N键的活化程度从第四副族至第八族呈现折线型下降,同时,过渡金属中心的外层价电子数的奇偶性对双氮的活化程度具有一定影响.此外,side-on键型对双氮的活化程度要高于end-on键型,具有不同基团的同种骨架配体对N—N键的活化能力没有明显区别。 90 kinds of dinitrogen binuclear transition-metal complexes at singlet and triplet states in Group 4-10 from Period 4 to 6 based on the biomimetic dinitrogen fixation species were studied using DFT method, [Cp*Fe(μ-η^2η^2bdt)-(μ-η^1η^1Me N=NMe)Fe Cp*] and [Cp*Fe(μ-SEt)2(μ-η^1η^1Me N=NMe)Fe Cp*], in order to investigate the transition-metal effect in N—N activation. The calculated results indicate that N—N bond activation is strongly related to the period of transition metal. N—N activation by transition metals in Period 6 is stronger than those in Period 5 and Period 4. For transition metals in the same period, N—N activation ability decreases from Group 4 to Group 10. The odd-even electron number of transition metal center also shows certain influence on the N—N activation. In addition, side-on coordination mode is more favorable than end-on mode for thiolate-bridged dinuclear transition-metal complexes on N—N bond activation. The type of ligands(BDT ligand or ethyl ligand) in this system has little impact on N—N activation.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2016年第4期340-350,共11页 Acta Chimica Sinica
基金 国家自然科学基金(No.21373023) 北京化工大学学科建设项目基金(No.XK1527)资助项目 "NSFC-广东联合基金(第二期)超级计算科学应用研究专项资助和国家超级计算广州中心支持"资助~~
关键词 过渡金属配合物 N—N键活化 金属调变 邻苯二硫酚桥联配体 配位键型 transition-metal complexes N—N activation metal effect thiolate-bridged ligand coordination modes
  • 相关文献

参考文献2

二级参考文献82

  • 1Hinrichsen S, Broda H, Gradert C, Soncksen L, Tuczek F. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. , 2012, 108: 17 -47.
  • 2Allen A D, SenoffC V. Chem. Commun. , 1965, (24) : 621- 622.
  • 3MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104 (2): 385-401.
  • 4Fryzuk M D, Johnson S A. Coord. Chem. Rev. , 2000, 379- 409.
  • 5Martinez S, Morokuma K, Musaev D G. Organometallics, 2007, 26 (24) : 5978-5986.
  • 6Goldberg K I, Hoffman D M, Hoffmann R. Inorg. Chem., 1982, 21 (11): 3863-3868.
  • 7Zhang W, Tang Y, Lei M, Morokuma K, Musaev D G. Inorg. Chem. , 2011, 50 (19) : 9481-9490.
  • 8MacLachlan E A, Fryzuk M D. Organometallics, 2006, 25 (7) : 1530-1543.
  • 9Evans W J, Ulibarri T A, Ziller J W. J. Am. Chem. Soc. , 1988, 110 (20) : 6877-6879.
  • 10Fryzuk M D, Johnson S A, Patrick B O, Albinati A, Mason S A, Koetzle T F. J. Am. Chem. Soc., 2001, 123 (17): 3960-3973.

共引文献5

同被引文献68

  • 1魏星跃,王星敏,李宁,秦圣英.N-支套索冠醚异羟肟酸的合成及其钴(II)配合物的氧加合性能[J].化学通报,2015,78(5):460-463. 被引量:2
  • 2熊忠华,陈琦,郑秀梅,魏锡文.UO_2^(2+)·nH_2O和PuO_2^(2+)·nH_2O(n=2,4,5,6)密度泛函理论研究[J].化学学报,2005,63(7):572-576. 被引量:3
  • 3Zhao Y. , Hu Q. , Li D. X. , China Synthetic Resin and Plastics, 2003, 20(5), 67-71.
  • 4Guo L. H. , Chen C. L. , Sci. China: Chem. , 2015, 58(11), 1663-1673.
  • 5Liu H. , Liu L. , Wang F. , Jia X. Y. , Bai C. X. , Zhang C. Y. , Zhang X. Q. , Chem. J. Chinese Universities, 2014, 35(6), 1336-1342.
  • 6Yang X. , Stern C. L. , Marks T. J. , J. Am. Chem. Soc. , 1994, 116(22), 10015-10031.
  • 7Woo T. , Fan L. , Ziegler T. , Organometallics, 1994, 13(6), 2252-2261.
  • 8Woo T. K. , Margl P. M. , Ziegler T. , Bl?chl P. E. , Organometallics, 1997, 16(15), 3454-3468.
  • 9Yang F. , Lv Z. B. , Zhao Y. Q. , Contemp. Chem. Ind. , 2014, 43(6), 973-974.
  • 10Xu X. X. , Yi J. J. , Jing Z. H. , Acta Polymerica Sinica, 2001, 1(5), 683-686.

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部