期刊文献+

集合Λ上的半格Γ确定的二元关系半群P_Γ(Λ×Λ)的不可分解元 被引量:2

Non-solvabla elements of semigroup P_Γ(Λ × Λ) of binary relations determined by the semilattice Γ on the set Λ
原文传递
导出
摘要 设Λ是任意的非空集合,Γ是集合Λ上的半格,PΓ(Λ×Λ)是集合Λ上的半格Γ确定的二元关系半群。得到了半群PΓ(Λ×Λ)的不可分解元的一个充分必要条件,并且在一定条件下找到了一类不可分解元。 Let Λ be an arbitrary nonempty set,and Γ be a semilattice on the set Λ. Let PΓ( Λ × Λ) is a semigroup of binary relations determined by the semilattice Γ on the set Λ. In the semigroup PΓ( Λ × Λ),a necessary and sufficient condition of non-solvable elements is obtained,and a class of non-solvable elements is found under certain conditions.
作者 林屏峰
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期12-15,共4页 Journal of Shandong University(Natural Science)
基金 中央高校基本科研业务费专项项目(2015NZYQN38)
关键词 半格 二元关系半群 不可分解元 semilattices semigroup of binary relations non-solvable elements
  • 相关文献

参考文献10

二级参考文献31

  • 1PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35:743-753.
  • 2PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum,1970, 1: 267-271.
  • 3SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math,1970, 20: 696-702.
  • 4KONIECZNY J. Green's equivalences in finite semigroups of binary relations[J]. Semigroup Forum, 1994,48: 235-252.
  • 5KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25:627-641.
  • 6CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18: 79-82.
  • 7CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236.
  • 8CHASE K. Maximal groups in sandwish semigroups of binary relations[J]. Pacific J Math, 1982, 100: 43-59.
  • 9KIM KI HANG Boolean matrix theory and applications[M]. New York: Marcel Dekker, 1982.
  • 10HOWIE J M. An Introduction to Semigroup Theory[M]. Landon: Acdemi Press, 1976.

共引文献6

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部