期刊文献+

椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法 被引量:1

Iterative non-overlapping domain decomposition method for optimal boundary control problems governed by elliptic equations
原文传递
导出
摘要 研究了一类椭圆方程约束的最优边界控制问题的数值求解方法。为了避免运用传统数值方法所产生庞大的计算量,我们采用非重叠型区域分解迭代方法。即:将求解区域Ω分解成若干个非重叠子区域,把上述的最优边界控制问题分解成这些子区域上的局部问题,这些局部问题间的内边界条件采用Robin条件。建立了求解这些局部问题的迭代格式,推导证明了迭代格式的收敛性。最后,给出一个数值算例,验证了迭代格式的有效性。 A numerical method for solving optimal boundary control problems governed by elliptic equations is considered. In order to avoid large amounts of calculation produced by traditional numerical methods. An iterative non-overlapping domain decomposition method is established. The whole domain is divided into many non-overlapping subdomains,and the optimal boundary control problem is decomposed into local problems in these subdomains. Robin conditions are used to communicate the local problems on the interfaces between subdomains. The iterative scheme for solving these local problems is studied,and prove the convergence of the scheme is proved. Finally,a numerical example to prove the validity of the scheme is presented.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期21-28,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11301300 11271231)
关键词 椭圆方程 最优边界控制问题 非重叠型区域分解 迭代方法 Robin条件 elliptic equation optimal boundary control problem non-overlapping domain decomposition method iterative method Robin conditions
  • 相关文献

参考文献16

  • 1LIONS J L. Optimal control of systems governed by partial differential equations[M]. New York: Springer-Verlag, 1971.
  • 2NEITFAANMAKI P, TIBA D. Optimal control of nonlinear parabolic systmes, Theroy, Algorithms and Applications [ M ]. Florida- CRC Press, 1994.
  • 3LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs [ M ]. Beijing: Science Press, 2008.
  • 4GE Liang, LIU Wenbin, YANG Danping. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes[J]. Journal of Scientific Computing, 2009, 41(2) :238-255.
  • 5YAN Ningning, ZHOU Zhaojie. A prior and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation[ J]. Journal of Computational and Applied Mathematics, 2009, 223(1 ) :198-217.
  • 6BJORSTAD P E, WIDLUND O B. Iterative methods for the solution of elliptic problems onregionsp artitionedi nto substruc- tures [ J ]. SIAM Journal on Numerical Analysis, 1986, 23 (6) : 1097-1120.
  • 7BRAMBLE J H, PASCIAK J E, SCHARTA A H. The construction of preconding for elliptic problems by substructuring[ J]. Mathematics of Computation, 1986, 47 (175) : 103-134.
  • 8SUN Tongjun, MA Keying. Parapllel Galerkin domain decomposition procedures for wave euqation[ J ]. Journal of Computa- tional and Applied Mathematics, 2010, 233:1850-1865.
  • 9MA Keying, SUN Tongjun. Galerkin domain decomposition procedures for parabolic equations on rectangular domain [ J ]. In- ternational Journal for Numerical Methods in Fluids, 2010, 62 (4) :449-472.
  • 10LOINS J L, BENSOUSSAN A, GLOWINSKI R. Mrthode de drcomposition appliqure au contrrle optimal de systemes distriburs [ C ]. 5th IFIP Conference on Optimization Techniques, Lecture Notes in Computer Science. Berlin: Springer Verlag, 1973 : 5.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部