期刊文献+

Z_(2~a)+uZ_(2~a)上线性码的MacWilliams恒等式及自对偶码

Mac Williams identity and self-dual codes of linear codes over Z_(2~a)+ uZ_(2~a)
原文传递
导出
摘要 考虑环R=Z2a+uZ2a上的线性码,其中u2=u。研究了环R上线性码的完全Gray权估计的M ac Williams恒等式。给出了环R上的自对偶码的生成矩阵及环Z23+u Z23上长为偶数n的自对偶码的数量公式。讨论了环R上的挠码,得到挠码的生成矩阵及挠码与剩余码的关系。 The linear codes over R = Z2 a+ u Z2 awith u2= u are discussed. Mac Williams identity for the complete Gray weight enumerator is investigated firstly. Then,the generator matrices of self-dual codes over R and the number of distinct self-dual codes of even length n over Z23+ u Z23 are given. The torsion codes over R are discussed and the generator matrices of torsion codes and the relationship between the torsion codes and the residue codes are also obtained.
作者 宋贤梅 熊蕾
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期72-78,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11401009) 安徽省教育厅重点研究项目(1408085QA01)
关键词 MACWILLIAMS恒等式 自对偶码 挠码 MacWilliams identity self-dual code torsion code
  • 相关文献

参考文献8

  • 1HAMMONS A R, KUMAR V, CALDERBANK A R, et al. The Z4-1inearity of Kerdock, Preparata, Goethals and related codes[ J]. IEEE Trans Inf Theory, 1994, 40:301-319.
  • 2WAN Zhexian. Quaternary codes[ M]. Singapore: World Scientific Publishing Co Pte Ltd, 1997: 25-68.
  • 3RAINS Eric. Bound for self dual codes over Z4[ J]. Finite Fields and Their Applications, 2000, 6 (2) :146-163.
  • 4朱士信.Z_k线性码的对称形式的MacMilliams恒等式[J].电子与信息学报,2003,25(7):901-906. 被引量:27
  • 5YILDIZ B, Karadeniz S. Linear codes over Z4 + uZ4: MacWilliams identities, projections, and formally self-dual codes [ J]. Finite Fields Appl, 2014, 27:24-40.
  • 6GAO Jian, WANG Xianfang, FU Fangwei. Self-dual codes and quadratic residue codes over Z9 + uZ9 [ J/OL]. [2014-12- 10 ]. http ://arxiv. org/pdf/1405. 3347v2. pdf.
  • 7张莉娜,殷志祥.Z_(p^m)环上的自对偶码与幺模格的构造[J].通信技术,2009,42(2):42-43. 被引量:1
  • 8NAGATA Kiyoshi, NEMENZO Fidel, WADA Hideo. The number of self-dual codes over Zp3 [ J]. Designs Codes and Cryp- tography, 2009, 50(3):291-303.

二级参考文献14

  • 1Hammons, Jr A R, Kumar P V and Sloane N J A, The Z4-linearity of Kerdock, Preparata, Goethals and related codes[J].IEEE Trans. Inform. Theory, 1994,40:301-319
  • 2Bonnecaze A, Sole P, and Calderbank A R, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory[J].1995,41:366-377.
  • 3Wan Z X, Quaternary Codes[M]. Singapore: World Scientific, 1997.
  • 4Dougherty S T, Hardada M, Type Ⅱ self-dual codes over finite rings and even unimodulor lattices,[J]. J. of Algebraic Combinatorics, 1999,9,233-250.
  • 5Calderbank A R, Sloane N J A. Modular and p-adic codes[J]. Des.,Codes and Cryptogr ,1995, 6:21-35.
  • 6M. Harada, On the Hamming weight enumerators of self-dual codes over Zk[J], Finite Fields and Their Applications, 1999, 5(1), 26-34.
  • 7C. Carlet, Z2k-Linear codes [J], IEEE Trans. on Info. Theory, 1998, IT-44(4), 1543-1547.
  • 8S. Ling, P.Sold, Duadic over Z2k[J], IEEE Trans. on Info. Theory, 2001, IT-47(4), 1581-1589.
  • 9E. Rains, Bounds for self-dual codes over Z4[J], Finite Fields and Their Applications, 2000, 6(2),146-163.
  • 10P. Langevin, Duadic Z4-codes[J], Finite Field and Their Applications, 2000, 6(3), 309-326.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部