期刊文献+

一维梯状结构Cu(Ⅱ)配合物的合成、结构与性质研究

Synthesis, Crystal Structure and Properties of One 1D Stair-like Structure Cu(Ⅱ) Complex
原文传递
导出
摘要 选用2,6-H2ndc为主配体,344-pytpy为辅助配体,在水热条件下与Cu(NO3)2?2.5H2O反应,得到了1个新的配合物[Cu2(2,6-ndc)2(344-pytpy)(H2O)3DMF],其中2,6-H2ndc=2,6-萘二羧酸,344-pytpy=2,6-二(4'-吡啶基)-4-(3'-吡啶基)吡啶.X射线单晶衍射分析表明,Cu1与2个羧基氧原子,1个氮原子,2个水分子配位,而Cu2中1个DMF配位取代了Cu1中的1个水分子,两者均为五配位四面体构型.Cu1、Cu2通过含氮辅助配体桥连,形成一维梯状结构.该配合物具有良好的热稳定性. The main ligand H2ndc and auxiliary ligand 344-pytpy reacted with Cu(NO3)2·2.5H2O under hydrothermal conditions to afford a novel Cu( Ⅱ ) complex [Cu2(2,6-ndc)2(344-pytpy)(H2O)3DMF](2,6-H2ndc= 2,6-naphthoic acid, 344-pytpy=2,6-bis(4'-pyridyl)-4-(3'-pyridyl)pyridine). The single-crystal X-ray diffraction analysis shows that Cul coordinate with two oxygen atoms from two main ligands, one nitrogen atom from auxiliary ligand and two water molecules, Cu2 coordinate with two oxygen atoms from two main ligands, one nitrogen atom from auxiliary ligand, one water molecule and one DMF molecule, they are all tetrahedral configuration. The metal atoms which connect with each other according to auxiliary ligand form an interesting stair-like structure. The complex has good thermal stability.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期72-76,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家自然科学基金(21371103)
关键词 Cu(Ⅱ)配合物 晶体结构 热重分析 Cu( Ⅱ) complex crystal structure TGA analysis
  • 相关文献

参考文献16

  • 1Wang L, Guo B, Li H X, et al. Polynuclear copper( ]I ) pyrazolate complexes: Temperature-dependent protonol- ysis reactions, crystal structures and high catalytic activity toward the condensation of nitriles with 2-aminoalcohol [J]. Dalton Trans, 2013, 42:15 570-15 580.
  • 2Singh R, Bharadwaj P K. Coordination polymers built with a linear bis-imidazole and different dicarboxylates: Unusual entanglement and emission properties[J]. Cryst Growth Des, 2013, 13(8): 3 722-3 733.
  • 3Zhao X L, Sun D, Yuan S, et al. Comparison of the effect of functional groups on gas-uptake capacities by fixing the volumes of cages A and B and modifying the inner wall of cage C in rht-type MOFs[J]. Inorg Chem, 2013, 52(12): 10 350-10 355.
  • 4Zhou J M, Shi W, Xu N, et al. Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks[J]. Inorg Chem, 2013, 52(4): 8 082-8 092.
  • 5Park H J, Suh M P. Mixed-ligand metal-organic frameworks with large pores: Gas sorption properties and sin- gle-crystal-to-single-crystal transformation on guest exchange[J]. Chemistry-A European Journal, 2008, 14(29): 8 812-8 821.
  • 6Furman J D, Burwood R P, Tang M, et al. Understanding ligand-centred photoluminescence through flexibilityand bonding of anthraquinone inorganic-organic frameworks[J]. J Mater Chem, 2011, 21:6 595-6 601.
  • 7Chanel F I., Bun C, Deanna M, et al. Electronic, optical, and computational studies of a redox-active naptha- lene diimide-based coordination polymer[J]. Inorg Chem, 2013, 52:14 246--14 252.
  • 8Hu Z C, Zheng C, Li J, et al. Selective, sensitive, and reversible detection of vapor-phase high explosives via two- dimensional mapping: A new strategy for MOF-based sensors[J]. Cryst Growth Des, 2013, 13:4 204--4 207.
  • 9Chanel F L, Thomas B F, Deanna M, et al. Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework[J]. Dalton Trans., 2013, 42:9 831- 9 839.
  • 10Sara S P D, Duarte M T, Alexander M K, et al. Topological diversity of supramolecular networks constructed from copper(1I) aminoalcohol blocks and 2,6-naphthalenedicarboxylate linkers: Self-assembly synthesis, structural features, and magnetic properties[J]. Cryst Growth Des, 2014, 14:3 398--3 407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部