期刊文献+

一类反应扩散方程的Hopf分岔研究(英文)

Hopf Bifurcation Analysis of a Reaction Diffusion Model with Autocatalysis and Saturation Law
原文传递
导出
摘要 对一类反应扩散方程进行Hopf分岔研究,得到了极限环产生的条件,并且运用中心流形理论分析了极限环的稳定性. The existence of periodic solutions of a reaction diffusion model is investigated, associated with autocatalysis and saturation law, subjected to Neumann boundary condition. At the same time, the bifurcation direction and the stability of spatially homogeneous periodic solution are obtained.
作者 白金龙
机构地区 天津大学理学院
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期84-87,共4页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by the grant of NSFC(11071185 11471240)
关键词 HOPF分岔 周期解 稳定性 Hopf bifurcation periodic solutions stability
  • 相关文献

参考文献6

  • 1Peng R, Shi J, Wang M. On stationary patterns of a reaction-diffusion model with autocatatysis and saturation law[J]. Nonlinearity, 2008, 21:1 471-1 488.
  • 2Hassard B D, Kazarinoff N D, Wan Y H. Theory and Application of Hopf Bifurcation[M]. Cambridge: Cam- bridge Univ Press, 1981.
  • 3Yi F, Wei J, Shi J. Bifurcation and spatiotemporal pattems in a homogeneous diffusive predator-prey system[J]. J Diff Eqns, 2009: 246:1 994-1 977.
  • 4Han W, Bao Z. Hopf bifurcation analysis of a reaction-diffusion Sel'kov system[J]. J Math Anal Appl, 2009, 356: 633-641.
  • 5Du L, Wang M. Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model[J]. J Math Anal Appl, 2010, 366: 473-485.
  • 6Guo G, I.i B, Wei M, et al. Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model[J]. J Math Anal Appl, 2012, 391: 265-277.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部