期刊文献+

一类复变量优化问题的次梯度投影算法

A complex-valued subgradient projection method( CSPM) for a class of complex variables non-smooth convex optimization problems
下载PDF
导出
摘要 利用CR微分理论,提出求解一类线性等式约束的复变量非光滑凸优化问题的复值次梯度投影算法(CSPM),该算法能完全基于复域上运行。在较弱的条件下证明了算法的全局收敛性,数值实验进一步表明了CSPM的可行性和有效性,该算法尤其适合大规模优化问题的求解。 A complex-valued subgradient projection method( CSPM) based on CR calculus theory is presented to solve a class of complex variables non-smooth convex optimization problems with linear equality constraints,which can be completely implemented in the complex domain. The proposed method is proved to be globally convergent under mild conditions. Numerical experiments show that CSPM is feasible and effective and suitable for solving large-scale optimization problems.
作者 张宋传
机构地区 闽江学院数学系
出处 《福建工程学院学报》 CAS 2016年第1期86-89,共4页 Journal of Fujian University of Technology
基金 福建省中青年教师教育科研项目(JA15436)
关键词 次梯度 CR微分 复变量优化问题 非光滑 subgradient CR calculus theory complex variables optimization problem non-smoothness
  • 相关文献

参考文献12

  • 1钟玉泉.复变函数论[M].3版.北京:高等教育出版社,2006.22-27.
  • 2Kreutz D K. The complex gradient operator and the CR-calculus[EB/OL].2016-01-10.http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%20Files/complex_derivatives.pdf.
  • 3Wen J Z, Wen X. Fast estimation of sparse doubly spread acoustic channels[J].Journal of the Acoustical Society of America,2012,131(1):303-317.
  • 4Xia Y L, Took C C, Mandic D P. An augmented affine projection algorithm for the filtering of noncircular complex signals[J].Signal Processing,2010,90(6):1788-1799.
  • 5Brandwood D H. A complex gradient operator and its applica-tion in adaptive array theory[J].IEE Proceedings of Communications Radar & Signal Processing,1983,130(1):11-16.
  • 6Mandic D P, Goh S L. Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models[M]. New York: Wiley,2009:55-68.
  • 7Nesterov Y, Shikkman V. Quasi-monotone subgradient methods for nonsmooth convex minimization[J]. Journal of Optimization Theory and Applications, 2015,165(3):917-940.
  • 8Nesterov Y. Subgradient methods for huge-scale optimization problems[J].Mathematical Programming,2012,146(1/2):275-297.
  • 9Nesterov Y. Primal-dual subgradient methods for convex problems[J].Mathematical Programming,2005,120(1):221-259.
  • 10龙强,李觉友.次梯度法在求解非光滑最优化问题时的计算效果研究(英文)[J].重庆师范大学学报(自然科学版),2013,30(6):25-30. 被引量:4

二级参考文献7

  • 1Shor N Z,Kiwiel K C, Ruszczynski A, Minimization meth- ods for non-differentiable functions [M]. Berlin: Springer- verlag, 1985.
  • 2Lemarechal C. Nondifferentiable optimization[C]/Nem- hauser G L,Rinnooy Kan A H G,Todd M J. Handbooks in Operations Research and Management Science, Optimiza- tion. Amsterdam, Netherlands : North Holland, 1989.
  • 3Lukan L, Vlek J. Test problems for nonsmooth uncon- strained and linealy constrained optimization[R]. Institute of Computer Science,Academy of Science of the Czech Re- public, 2000.
  • 4Polyak B T. A general method for solving extremal problem [J]. Dokl Akad Mauk SSSR,1967,174:33-36.
  • 5Ermolev Y M. Methods of solution of nonlinear extremal problems[J]. Cybernetics and Systems Analysis, 1966, 2 (2) : 1-14.
  • 6Polyak B T. Subgradient methods: a survey of soviet union research[C]//Lemarechal C, Mifflin R. Nonsmooth Opti- mization. Oxford : Pergamon Press, 1977.
  • 7Polyak B T. Introduction to optimization[M]. New York: Optimization Software Inc Publications Division, 1987.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部