摘要
研究了如下一类带临界非线性项的Kirchhoff型方程:{-(a+b∫_a|▽u|~2dx)Δu=λf(x,u)+u^5 u=0 x∈Ω其中a,b,λ>0,Ω是R^3中的一个有界且带光滑边界的区域.在f没有(AR)条件的假设下,运用Brézis-Lieb引理和山路引理证明了方程至少存在1个正解.
This paper considers the following Kirchhoff type problem involving a critical non-linearity:{-(a+b∫_a|▽u|-2dx)Δu=λf(x,u)+u-5 u=0 x∈Ω where a,b,λ0 and Ω is a smooth bounded domain with smooth boundary Ω.Under f not satisfying(AR)condition,it shows that the above problem has at least one positive solution via the variation method of Brézis-Lieb lemma and mountain pass lemma.
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2016年第4期29-34,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11471267)