期刊文献+

MISO-FIR系统的梯度追踪辨识算法 被引量:3

Gradient Pursuit Identification Algorithm for MISO-FIR Systems
原文传递
导出
摘要 针对含有未知时滞的多输入单输出有限脉冲响应系统,根据系统参数化后具有的稀疏特性,基于压缩感知原理,将匹配追踪方法和梯度搜索原理相结合,在有限采样数据下,提出了可以同时估计系统参数和时滞的梯度追踪算法.该算法同正交匹配追踪算法相比,梯度追踪算法具有较小的计算量.最后通过仿真验证了算法的有效性. For multiple-input single-output finite impulse response( MISO-FIR) systems with unknown time delays,we combine the matching pursuit method and the gradient search principle,according to the sparsity of the parameterized model based on the compressed sensing theory,and propose a gradient pursuit algorithm for simultaneously estimating parameters and time delays with limited sampling data. The proposed method reduces the associated computational burden compared with that of the orthogonal matching pursuit algorithm.The simulation results show the effectiveness of the proposed algorithm.
出处 《信息与控制》 CSCD 北大核心 2016年第2期151-156,共6页 Information and Control
基金 国家自然科学基金资助项目(61304138) 江苏省自然科学基金资助项目(BK20130163)
关键词 梯度追踪 参数辨识 时滞估计 正交匹配追踪算法 gradient pursuit parameter identification time-delay estimation orthogonal matching pursuit algorithm
  • 相关文献

参考文献25

  • 1王建宏,王道波,王志胜.多个未知时延的MISO系统的递推辨识[J].控制与决策,2010,25(1):93-98. 被引量:11
  • 2李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4Ljung L. System identification: Them7 for the user[ M]. 2nd ed. Englewood Cliffs, N J, USA: Prentice-Hall, 1999.
  • 5Ding F. System identification - New theory and methods[ M ]. Beijing: Science Press, 2013:1 -33.
  • 6Unbehauen H, Rao G P. Continuous-time approaches to system identification - A survey[ J]. Automatica, 1990, 26 (2) : 23 -25.
  • 7Ding F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling[J]. Applied Mathematical Modelling, 2013, 37(4) : 1694 - 1704.
  • 8Liu Y J, Ding F, Shi Y. An efficient hierarchical identification method for general dual-rate sampled-data systems[J]. Automatica, 2014, 50 (3) : 962 - 970.
  • 9Ding J, Ding F, Liu X P, et al. Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data[J]. IEEE Trans- actions on Automatic Control, 2011, 56 (11 ) : 2677 -2683.
  • 10Sanandaji B M, Vincent T L, Wakin M B, et al. Compressive system identification of LTI and LTV ARX models[ C]//50th IEEE Conference on Decision and Control and European Control Conference. Piscataway, NJ, USA: IEEE, 2011:791 -798.

二级参考文献150

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献849

同被引文献9

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部