期刊文献+

Gabor变换在轮胎X光图像处理的应用 被引量:1

Application of Gabor Transform in X-ray Tire Image Processing
下载PDF
导出
摘要 在轮胎X射线检测图像中,钢丝帘线的不同排列方式构成不同的纹理图像。Gabor函数可提取图像在频域不同尺度和方向的特征,因此采用基于Gabor和Log-Gabor小波对轮胎X射线图像进行特征提取的方法,并用K-means方法进行图像聚类,实现了轮胎不同纹理图像的分割;采用Log-Gabor函数提取不同方向的纹理特征,并对提取结果进行比较,可检测带束层钢丝帘线疏线或顺线缺陷。 In the X - ray tire images, the different arrays of steel cords form different texture images. Using Gabor function, the features of images in different frequency domains and directions can be extract. Therefore features of X - ray tire images are extracted based on Log - Gabor and Gabor wavelet, then im- age segmentations are achieved with K -means clustering; Texture features are extracted in different direc- tions by Log -Gabor function, then the defects of rare cords or missing cords in one direction can be detec- ted by comparing the extraction results.
出处 《机械与电子》 2016年第4期59-61,65,共4页 Machinery & Electronics
关键词 轮胎 GABOR变换 图像分割 缺陷识别 X - ray tire image Gabor transform image segmentation defect recognition
  • 相关文献

参考文献8

  • 1Gabor D. Theory of communication[J]. Journal of lEE, 1946(93) :429- 441.
  • 2Granlund G H. Insearchofageneralpict - ureprocessing- operator[J]. Computer Graphics and Image Process- ing, 1978, 8(2):155-173.
  • 3吴高洪,章毓晋,林行刚.分割双纹理图像的最佳Gabor滤波器设计方法[J].电子学报,2001,29(1):48-50. 被引量:29
  • 4FIELD D J. Relationsbetween the statistics of natural images and the response properities of cortical cells [J]. Journal of the Optical Society of America A, 1987, 4(12) :2379 - 2394.
  • 5Manjunathi B S, Ma W Y. Texture features for brow- sing and retrieval of image data[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
  • 6马江林,赵忠明,汪承义,钟建强.一种新的基于Gabor小波的非监督纹理分割方法[J].武汉大学学报(信息科学版),2009,34(1):11-14. 被引量:8
  • 7Clausi D A, Jernigan M. Designing Gabor filters for optimal texture separability[J]. Pattern Ree- ogni- tion, 2000, 33(11): 1835- 1849.
  • 8王风华,韩九强.一种Log-Gabor滤波结合特征融合的虹膜识别方法[J].西安交通大学学报,2007,41(8):889-893. 被引量:4

二级参考文献21

  • 1黄昕,张良培,邵振锋,李平湘.基于独立分量分析的纹理特征维数减少[J].武汉大学学报(信息科学版),2006,31(12):1055-1058. 被引量:3
  • 2Randen T, Husoy J H. Filtering for Texture Classification: A Comparative Study[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4):291-310
  • 3Clausi D A, Jernigan M. Designing Gabor filters for optimal texture separability[J]. Pattern Recognition, 200, 33(11):1 835-1 849
  • 4Bigun J, du Bur J M H. N-folded Symmetries by Complex Moments in Gabor Space and their Application to Unsupervised Texture Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(1):80-87
  • 5David A, Sergei V. k-means^++ : the Advantages of Careful Seeding[C].2007 ACM-SIAM Symposium on Discrete Algorithms (SODA'07), New Orleans, 2007
  • 6Manjunathi B S, Ma W Y. Texture Features for Browsing and Retrieval of Image Data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842
  • 7Hansen L K, Larsen J, Kolenda T. Blind Detection of Independent Dynamic Components [J]. IEEE, 2001(5): 3 197-3 200
  • 8Bell A, Sejnowski T J. An Information Maximization Approach to Blind Separation[J].Neural Computation, 1995(7): 1 129-1 159
  • 9Jianguo Zhang, Tieniu Tan, Li Ma. Rotation Invariant Texture Segmentation via Circular Gabor Filters[J]. IEEE International Conference on Pattern Recognition, 2002(2):901-904
  • 10Dunn D,IEEE Transactions on PAMI,1994年,16卷,2期,130页

共引文献38

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部