摘要
使用主成分分析方法将众多影响我国房地产上市公司债务融资的因素简化为少数因素,以消除多重共线性对模型的干扰。同时对原有数据进行平稳性检验、协整检验和脉冲响应,并使用SPSS、EVIEWS软件构建回归模型。在定性分析的基础上,利用2000年以来我国房地产上市公司的真实数据进行多元回归分析,将宏观调控因素作为虚拟变量引入计量模型,发现公司短期偿债能力对公司债务融资水平的影响最大,最后结合模型结果提出公司有关债务融资的对策建议。
Using principal component analysis method to a multitude of factors influencing the debt financing of listed companies of real estate in our country is simplified to a few factors,in order to eliminate multicollinearity disturbance to the model. For the original data stationarity test,cointegration test and impulse response,and the use of SPSS and EVIEWS software to build regression model. On the basis of qualitative analysis,using the real data of the real estate listed companies in China since 2000,multiple regression analysis to the introduction of the macroeconomic regulation and control factors as virtual variable econometric model,found the company's short- term solvency impact on corporate debt financing level,the largest company is combined with the model results presented countermeasures and Suggestions about the debt financing.
出处
《宜春学院学报》
2016年第4期44-48,共5页
Journal of Yichun University
基金
国家自然科学基金项目(11301001)
国家级大学生创新项目(201510378020)
大学生科研创新基金项目(JRXY201605)
关键词
房地产上市公司
债务融资
影响因素
主成分分析
Real estate listed companies
debt financing
influencing factors
principal component analysis