期刊文献+

一个新的分数阶超混沌系统的同步 被引量:1

Synchronization of a fractional-order hyperchaotic system
下载PDF
导出
摘要 研究分数阶超混沌L¨u系统的超混沌行为,给出在不同的参数下生成超混沌的最低阶数.并从理论和数值上研究L¨u系统的同步,通过计算机数值仿真证明提出方法的正确性和有效性. Hyperchaotic behaviors of fractional-order hyperchaotic Lú system are studied in this paper.The lowest order for generating hyperchaos with different control parameter is given.The synchronization of Lú system is theoretically and numerically studied.It is verified by means of numerical simulation on computer that the method presented is valid and effective.
出处 《兰州理工大学学报》 CAS 北大核心 2016年第2期148-152,共5页 Journal of Lanzhou University of Technology
基金 四川省人工智能重点实验室项目(2014RYJ05) 桥梁无损检测和工程计算四川省高校重点实验室项目(2014QYJ01)
关键词 计算机仿真 超混沌系统 同步 拉普拉斯变换 computer simulation hyperchaotic system synchronization Laplace transform
  • 相关文献

参考文献24

  • 1PODLUBNY I. Fractional differential equations [M]. San Die- go: Academic Press, 1999.
  • 2MATSUMOTO T, CHUA L O, KOBAYASHI K. Laboratory experiment and numerical confirmation [J]. IEEE Trans Cir- cuits System, 1986,33 : 1143-1147.
  • 3JIA Q. Generation and suppression of a new hyperchaotic sys- tem with double hyperchaotie attractors[J]. Phys Lett A, 2007,371 : 410-415.
  • 4CAI G, TAN Z, ZHOU W, et al. The dynamical analysis and control of a new chaotic system [J]. Aeta Phys Sin, 2007,56: 6230-6237.
  • 5JIANG P Q, WANG B H, BU S L, et al. Hyperehaotic syn- chronization in deterministic small-world dynamical networks [J]. Int J Mod Phys B, 2004,18: 2674-2681.
  • 6DUARTE F B M, MACADO J A T. Chaotic phenomena and fractional dynamics in the trajectory control of redundant ma- nipulators [J]. Nolinear Dyn, 2002,29 : 315-342.
  • 7SUN H H, ABDELWAHAD A A, ONARAL B. Linear ap- proximation of transfer function with a pole of tractional order [J]. IEEE Trans Automat Control, 1984,29(5) : 441-444.
  • 8KOELLER R C. Application of fractional calculus to the theory of viscoelasticity [J]. J Appl Mech, 1984,51 : 299-307.
  • 9ZHOU X,WU Y, I.I Y, et al. Adaptive control and synchroni- zation of a novel hyperchaotie system with uncertain parame ters [J]. Appl Math Comput, 2008,203 : 80-85.
  • 10LIT Z, WANG Y, YANG Y. Synchronization of fractional-or der hyperchaotic systems via fractional-order controllers[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 4089721-40897215.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部