期刊文献+

改进的模糊C均值算法用于掺杂橄榄油的分类和半定量研究

Classification and Semi-Quantitation of Olive Oil Adulteration by Adaptive Fuzzy C Means
下载PDF
导出
摘要 针对橄榄油的掺杂检测问题,提出了基于粒子群优化算法的模糊C均值分类算法,可以同时进行分类和半定量分析,并建立了新的目标函数评价算法.结果表明改进的模糊C均值算法简单、快速、有效. Determination of the authenticity of extra virgin olive oils has become more and more important in recent years. In this paper,the adaptive fuzzy C means optimized by particle swarm optimization algorithm( AFCMPSO) is proposed to obtain classification and semi-quantitative information of olive oils. To semi-quantify the adulteration in olive oil,a new objective function is proposed for AFCMPSO. The results show that this chemometric method can classify and semi-quantify the adulterated oil simultaneously and is a stable and reliable method for identifying olive oils.
出处 《平顶山学院学报》 2016年第2期50-53,共4页 Journal of Pingdingshan University
基金 福建省自然科学基金(2013J05023) 国家自然科学基金(21575131)
关键词 模糊C均值 粒子群优化算法 橄榄油 fuzzy C means particle swarm optimization olive oil
  • 相关文献

参考文献1

二级参考文献17

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部