期刊文献+

选择性搜索和多深度学习模型融合的目标跟踪 被引量:7

Multi-Clue Fusion Target Tracking Algorithm Based on Selective Search and Deep Learning
下载PDF
导出
摘要 提出一种基于深度学习的多模型(卷积神经网络和卷积深信度网络)融合目标跟踪算法.该算法在提取候选粒子方面,使用选择性搜索和粒子滤波的方法.CVPR2013跟踪评价指标(50个视频序列、30个跟踪算法)验证了:该算法在跟踪中能有效地缓解目标物体由于遮挡、光照变化和尺度变化等因素造成的跟踪丢失情况的发生. A multi-clue tracking algorithm(convolutional neural network and convolutional deep belief network)based on deep learning was proposed.The algorithm used selective search and particle filtering method in extracting candidate particles.CVPR2013 tracking benchmark(50video sequences,30 tracking algorithms)verifies:the algorithm can ease the loss of tracking due to the occlusion,the change of illumination and size etc.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2016年第2期207-212,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61202299) 国家自然科学基金面上资助项目(61572205) 福建省自然科学基金资助项目(2015J01257) 福建省高校杰出青年科研人才培育计划项目(JA13007)
关键词 目标跟踪 深度学习 多模型融合 选择性搜索 评价指标 object tracking deep learning multi-clue fusion selective search evaluating indicator
  • 相关文献

参考文献11

  • 1FAN Jialue, XU Wei,WU Ying, et al. Human tracking using convolutional neural networks[J]. IEEE Trans Neural Netw,2010,21 (10) : 1610-1623.
  • 2CARNEIRO G, NASCIMENTO J C. Combining multiple dynamic models and deep learning architectures for track- ing the left ventricle endoeardium in ultrasound data[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2013,35(11) :1649-1665.
  • 3WANG Naiyan, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proceedings of Twenty-Seventh Annual Conference on Neural Information Processing Systems. Nevada: MIT Press, 2013:5-10.
  • 4UIJLINGS J R R, van DE SANDE K E A, GEVERS T, et al. Selective search for object recongnition[J]. Internation- al Journal of Computer Vision, 2013,104(2) : 154-171.
  • 5CARREIRA J, SMINCHISSCU C. Cpmc: Automatic object segmentation using constrained parametric min-cuts [J]. PAMI, 2012,34(7) : 1312-1328.
  • 6KRIZHEVSKY A, SUTSKEVER I, H INTON G E. ImageNet classification with deep eonvolutional neural networks [C]//Advances in Neural Information Processing Systems. Washington: MIT Press, 2012: 2-8.
  • 7LEE H,LARGMAN Y, PHAM P, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C] // Advances in Neural Information Processing Systems. New York: MIT Press, 2009:1-22.
  • 8HUANG G B, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with conv- olutional deep belief[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,8 (6) :1836-1844.
  • 9LEE H,GROSSE R, RANGANATH R, et al. Unsupervised learning of hierarchical representations with convolu- tional deep belief networks[J]. Communications of the ACM, 2011,54 (10) : 95-103.
  • 10TORRALBA A, FERGUS R, FREEMAN W. 80 million tiny images: A large data set for nonparametrie object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(11):1958-1970.

同被引文献41

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部