期刊文献+

不确定分数阶同步发电机混沌系统的滑模自适应控制及参数辨识 被引量:5

Adaptive Sliding Mode Control and System Identification in Fractional-order Chaotic Synchronous Generator System with Uncertainty
下载PDF
导出
摘要 考虑了一种带有周期性负荷扰动和电磁功率扰动的同步发电机系统模型.基于分数阶稳定性原理,对分数阶系统的动力学特性做了仿真分析.针对系统内部参数和扰动幅值的不确定,利用径向基函数神经网络的万能逼近特性改进滑模控制方法,设计了一种基于径向基函数的自适应滑模控制器,实现参数辨识,使系统输出能渐近跟踪目标轨迹,进而抑制分数阶系统混沌振荡.研究表明,该方法控制时间短、逼近误差小,而且有效地消除了抖振,具有实时控制、鲁棒性高等特点. Chaos oscillation of a new fractional order synchronous generator system was studied,and its dynamic behaviors under two disturbances via bifurcation diagram and phase plane were discussed.The result proves that the uncertain fractional-order chaotic system can be asymptotically stable.The radial basis function(RBF)neural network has been applied in identification of nonlinear part in fractional-order system.The identification model has been joined in system to compensate nonlinearity,and a no-chattering sliding mode control strategy to control chaos is designed.Simulation results show the effectiveness of the method.
出处 《河北师范大学学报(自然科学版)》 CAS 2016年第2期116-123,共8页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(61372050)
关键词 分数阶同步发电机系统 自适应滑模控制 RBF神经网络 参数辨识 fractional order synchronous generator system adaptive sliding mode control neural network system identification
  • 相关文献

参考文献21

  • 1BAGLEY R L,CALICO R A.Fractional Order State Equations for the Control of Viscoelastic Structures[J].J Guid Control Dyn,1991,14(2):304-311.doi:10.2514/3.2064.
  • 2HILFER R.Application of Fractional Calculus in Physics[M].New Jersey:World Scientific,2001.
  • 3KOELLER R C.Polynomial Operators,Stieltjes Convolution,and Fractional Calculus in Hereditary Mechanics[J].Acta Mech,1986,58(3/4):251-264.doi:10.1007/BF01176603.
  • 4HEAVISIDE O.Electromagnetic Theory[M].New York:Chelsea,1971.
  • 5YU Y N.Electric Power System Dynamics[M].New York:Academic Press,1983.
  • 6张皖军,尹其云.1996年电网事故的启示[J].电网技术,1997,21(4):54-57. 被引量:13
  • 7DOBSON I,CHIANG H D,THOMAS R J.A Model of Voltage Collapse in Electric Power System[C]//MICHAEL P P.Proceedings of the 27th Conference on Decision and Control.Texas:IEEE Press,1988:2104-2109.doi:10.1109/CDC.1988.194705.
  • 8CHIANG H D,LIU C C,VARAIYA P P,et al.Chaos in a Simple Power System[J].IEEE Transactions on Power Systems,1993,8(4):1407-1417.doi:10.1109/59.260940.
  • 9RAJESH K G,PADIYAR K R.Bifurcation Analysis of a Three Node Power System with Detailed Models[J].Electrical Power and Energy Systems,1999,21(5):375-393.doi:10.1016/S0142-0615(99)00002-2.
  • 10王宝华,张强,杨成梧,杨伟.电力系统混沌振荡的自适应最优控制[J].继电器,2004,32(4):1-4. 被引量:5

二级参考文献141

共引文献177

同被引文献33

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部