期刊文献+

理想对称模

On Ideal Symmetric Modules
下载PDF
导出
摘要 本文引进了理想对称模的概念,给出了理想对称模的系列等价刻画,用理想对称模给出了环R为理想对称环的若干等价条件,证明了对于环R的满足右Ore条件正则元的集S,如果S-挠自由R-模M是理想对称模,则M关于S的右分式模也是理想对称的,推广了理想对称环的相应结果. In this paper by introducing the concept of ideal symmetric module and giving some equivalent chara- terizations to it, some equivalent conditions under which a ring R is ideal symmetric are obtained. When S is a subset of some regular elements of a ring R satisfying the right Ore conditions,it is proved that the module of fractionsM[S-l] is also ideal symmetric if M is ideal symmetric and S--torsion--free, which generalizes the re- suits in ~7] on ideal symmetric rings.
出处 《数学理论与应用》 2016年第1期1-8,共8页 Mathematical Theory and Applications
基金 国家自然科学基金项目(11561025) 湖南省研究生创新科研基金项目(CX2015B434)
关键词 理想对称模理想对称环 Ore条件 分式模投射模 Ideal symmetric module Ideal symmetric ring Modules of fraction Projective module
  • 相关文献

参考文献9

  • 1Lambek,J. ,On the representation of modules by sheaves of factor modules[J], Canad Math Bull 1971, (3) : 359-368.
  • 2Marks, G. , Reversible and symmetric rings[J], J. Pure Appl, Algebra 2002,174 : 311 - 318.
  • 3Huh,C. ,Kim, H. K. ,Kim, N. K. , Lee, Y. , Basic examples and extensions of symmetric rings[J ], J. Pure Appl, Algebra 2005,202 : 154 - 167.
  • 4Shin, G. Y, Prime ideals and sheaf representation of a pseudo symmetric ring[J],Trans. Amer. Math, 1973, 184:43-60.
  • 5Katka,G. , Ungor B. , Halicioglu S. , Harmanci H. Generalized symmmetric rings[J], Algebra Discrete Math. 2011,(2): 78-84.
  • 6Wei,J. C. , Generalized weakly symmetric rings[J] ,J. of Pure and Applied Algebra 2014, : 1594-1603.
  • 7Camillo,V., Kwak, T. K. and Lee, Y., Ideal symmetric and semiprime rings[J],Comm, in Algebra, 2013,:4504-4519.
  • 8StenstrOm,B. ,Rings of Quotients[M] ,Springer- Verlag,Berlin Heidelberg New York, 1975.
  • 9Ssevviiri, D. and Groenewald, N. , Generalization of nilpotency of ring elements to module elements[J]. Comm. in Algebra, 2014, : 571 - 577.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部