期刊文献+

基于文档向量和回归模型的评分预测框架 被引量:2

A rating prediction framework based on distributed representation of document and regression model
下载PDF
导出
摘要 个性化推荐系统可以帮助用户在海量的项目集合中找到他们喜爱的项目,其被广泛地应用于岗位推荐系统、电子商务网站以及社交网络平台中。文章提出了一个基于文档向量和回归模型的评分预测框架,它利用文档向量表示模型将非结构化的评论文本用相同维度的向量表示,进而构造出刻画用户和产品的特征向量,最终融合多个回归模型进行评分预测。在基于真实的数据集上的实验表明,与基准模型相比,其显著改善了数据稀疏情况下评分预测的准确性。 Recommender systems typically produce a list of recommendations to precisely predict the user's preference for the items. It is widely used in post recommendation systems, e-commerce websites and social network platforms. This paper proposes a rating prediction framework based on distributed representation of document and regression model. The framework takes advantage of distributed representation of document to map the unstructured review texts into the same vector space, and furthermore constructs the feature vector of users and items. The framework trains several regression models to predict ratings. The extensive experiments on real-world datasets demonstrate that it performs better than the benchmark and alleviates the cold-start problem to some extent.
出处 《计算机时代》 2016年第5期24-29,共6页 Computer Era
基金 浙江省科技计划项目"基于智能推荐技术的新一代公共就业信息服务平台"(2015F50044)
关键词 推荐系统 数据稀疏 评论文本 文档向量 回归模型 评分预测 recommender system data sparsity review text distributed representation of document rating prediction
  • 相关文献

参考文献10

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 2邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 3Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations[Cl. Proc of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Re-trieval, August 11-15, 2002, Tampere, Finland,2002:253-260.
  • 4Quoc V. Le and Tomas Mikolov. Distributed representa- tions of sentences and documents[C]. Proceedings ofthe 31th International Conference on Machine Learn- ing, ICML 2014. New York: ACM,~ 2014:1188-1196.
  • 5Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality[C]. Annual Conference on Neural Information Processing Systems. MA: MIT Press,2013:3111-3119.
  • 6Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor classification[C]. Proceedlngs of Advances in Neural Information Processing Systems. MA: MIT Press,2005:1473-1480.
  • 7Leo Breiman. Random forests[J]. Machine Learning, 2001.45(1):5-32.
  • 8Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees[M]. Wad- sworth, 1984.
  • 9J. H. Friedman. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2000.29:1189-1232.
  • 10Julian J. McAuley, Jure Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text[C]. Proceedings of the 7th ACM Conference on Recommender System. New York: ACM,2013:165-172.

二级参考文献109

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献963

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部